Therefore the handle force required is $\mathrm{F}=\mathrm{P} / 16=222 / 16 \approx \mathbf{1 4} \mathbf{l b f}$ Ans.
2.21 In Fig. P2.21 all fluids are at $20^{\circ} \mathrm{C}$. Gage A reads 350 kPa absolute. Determine (a) the height h in cm ; and (b) the reading of gage B in kPa absolute.

Solution: Apply the hydrostatic formula from the air to gage A :

$$
\begin{aligned}
\mathrm{p}_{\mathrm{A}} & =\mathrm{p}_{\text {air }}+\sum \gamma \mathrm{h} \\
= & 180000+(9790) \mathrm{h}+133100(0.8)=350000 \mathrm{~Pa}, \\
& \text { Solve for } \mathrm{h} \approx \mathbf{6 . 4 9} \mathbf{~ m} \quad \text { Ans. (a) }
\end{aligned}
$$

Then, with h known, we can evaluate the pressure at gage B:

$$
\mathrm{p}_{\mathrm{B}}=180000+9790(6.49+0.80)=251000 \mathrm{~Pa} \approx \mathbf{2 5 1} \mathbf{~ k P a} \quad \text { Ans. (b) }
$$

2.22 The fuel gage for an auto gas tank reads proportional to the bottom gage pressure as in Fig. P2.22. If the tank accidentally contains 2 cm of water plus gasoline, how many centimeters " h " of air remain when the gage reads "full" in error?

Fig. P2.22

