2.35 Water flows upward in a pipe slanted at 30°, as in Fig. P2.35. The mercury manometer reads $\mathrm{h}=12 \mathrm{~cm}$. What is the pressure difference between points (1) and (2) in the pipe?

Solution: The vertical distance between points 1 and 2 equals $(2.0 \mathrm{~m}) \tan 30^{\circ}$ or 1.155 m . Go around the U-tube hydrostatically from point 1 to point 2 :

$$
\begin{aligned}
\mathrm{p}_{1} & +9790 h-133100 h \\
& -9790(1.155 \mathrm{~m})=\mathrm{p}_{2}
\end{aligned}
$$

$$
\text { or: } \mathrm{p}_{1}-\mathrm{p}_{2}=(133100-9790)(0.12)+11300=\mathbf{2 6 1 0 0} \mathbf{~ P a} \text { Ans. }
$$

2.36 In Fig. P2.36 both the tank and the slanted tube are open to the atmosphere. If $\mathrm{L}=$ 2.13 m , what is the angle of tilt ϕ of the tube?

Fig. P2.36
Solution: Proceed hydrostatically from the oil surface to the slanted tube surface:

$$
\begin{gathered}
\mathrm{p}_{\mathrm{a}}+0.8(9790)(0.5)+9790(0.5)-9790(2.13 \sin \phi)=\mathrm{p}_{\mathrm{a}} \\
\text { or: } \sin \phi=\frac{8811}{20853}=0.4225, \text { solve } \phi \approx \mathbf{2 5 ^ { \circ }} \text { Ans. }
\end{gathered}
$$

2.37 The inclined manometer in Fig. P2.37 contains Meriam red oil, $\mathrm{SG}=0.827$. Assume the reservoir is very large. If the inclined arm has graduations 1 inch apart, what should θ be if each graduation represents 1 psf of the pressure pA ?

Fig. P2.37

