

Solution: (a) The total volume of oil in the vat is $(3 \mathrm{~m})(7 \mathrm{~m})(4 \mathrm{~m}+2 \mathrm{~m}) / 2=63 \mathrm{~m}^{3}$. Therefore the weight of oil in the vat is

$$
\left.\mathrm{W}=\gamma_{\text {oil }}(\mathrm{Vol})=(0.85)\left(9790 \mathrm{~N} / \mathrm{m}^{3}\right)\left(63 \mathrm{~m}^{3}\right)=\mathbf{5 2 4 , 0 0 0} \mathbf{N} \quad \text { Ans. } \text {. } \mathrm{a}\right)
$$

(b) The force on the horizontal bottom surface of the vat is

$$
\mathrm{F}_{\text {bottom }}=\gamma_{\text {oil }} \mathrm{h}_{\mathrm{CG}} \mathrm{~A}_{\text {bottom }}=(0.85)(9790)(3 \mathrm{~m})(2 \mathrm{~m})(7 \mathrm{~m})=\mathbf{3 5 0}, \mathbf{0 0 0} \mathbf{N} \quad \text { Ans. (b) }
$$

Note that F is less than the total weight of oil-the student might explain why they differ? (c) I found in my statics book that the centroid of this trapezoid is 1.33 m below the surface, or 1.67 m above the bottom, as shown. Therefore the side-panel force is

$$
\mathrm{F}_{\text {side }}=\gamma_{\text {oil }} \mathrm{h}_{\mathrm{CG}} \mathrm{~A}_{\text {side }}=(0.85)(9790)(1.33 \mathrm{~m})\left(9 \mathrm{~m}^{2}\right)=\mathbf{1 0 0}, \mathbf{0 0 0} \mathbf{N} \quad \text { Ans. (c) }
$$

These are large forces. Big vats have to be strong!
2.51 Gate AB in Fig. P2.51 is 1.2 m long and 0.8 m into the paper. Neglecting atmospheric-pressure effects, compute the force F on the gate and its center of pressure position X.

Solution: The centroidal depth of the gate is

Fig. P2.51

$$
\begin{gathered}
\mathrm{h}_{\mathrm{CG}}=4.0+(1.0+0.6) \sin 40^{\circ}=5.028 \mathrm{~m}, \\
\text { hence } \quad \mathrm{F}_{\mathrm{AB}}=\gamma_{\text {oil }} \mathrm{h}_{\mathrm{CG}} \mathrm{~A}_{\text {gate }}=(0.82 \times 9790)(5.028)(1.2 \times 0.8)=\mathbf{3 8 7 5 0} \mathbf{~ N} \quad \text { Ans. }
\end{gathered}
$$

The line of action of F is slightly below the centroid by the amount

$$
\mathrm{y}_{\mathrm{CP}}=-\frac{\mathrm{I}_{\mathrm{xx}} \sin \theta}{\mathrm{~h}_{\mathrm{CG}} \mathrm{~A}}=-\frac{(1 / 12)(0.8)(1.2)^{3} \sin 40^{\circ}}{(5.028)(1.2 \times 0.8)}=-0.0153 \mathrm{~m}
$$

Thus the position of the center of pressure is at $X=0.6+0.0153 \approx \mathbf{0 . 6 1 5} \mathbf{~ m}$ Ans.

