Then summation of vertical forces on this $25-\mathrm{cm}$-wide freebody gives

$$
\begin{aligned}
& \sum \mathrm{F}_{\mathrm{z}}=0=\mathrm{p}_{1} \mathrm{~A}_{1}-\mathrm{W}_{\text {water }}-\mathrm{W}_{\text {tank }}-2 \mathrm{~F}_{\text {bolt }} \\
& \quad=(39160)(4 \times 0.25)-(9790)(\pi / 2)(2)^{2}(0.25) \\
& \quad-(4500) / 4-2 \mathrm{~F}_{\text {bolt }},
\end{aligned}
$$

Solve for $\mathrm{F}_{\text {one bolt }}=\mathbf{1 1 3 0 0} \mathbf{N}$ Ans.
2.93 In Fig. P2.93 a one-quadrant spherical shell of radius R is submerged in liquid of specific weight γ and depth $\mathrm{h}>\mathrm{R}$. Derive an analytic expression for the hydrodynamic force F on the shell and its line of action.

Solution: The two horizontal components are identical in magnitude and equal to the force on the quarter-circle side panels, whose centroids are ($4 \mathrm{R} / 3 \pi$) above the bottom:

Fig. P2.93

$$
\text { Horizontal components: } \quad \mathrm{F}_{\mathrm{x}}=\mathrm{F}_{\mathrm{y}}=\gamma \mathrm{h}_{\mathrm{CG}} \mathrm{~A}_{\mathrm{vert}}=\gamma\left(\mathrm{h}-\frac{4 \mathrm{R}}{3 \pi}\right) \frac{\pi}{4} \mathrm{R}^{2}
$$

Similarly, the vertical component is the weight of the fluid above the spherical surface:

$$
\mathrm{F}_{\mathrm{z}}=\mathrm{W}_{\text {cylinder }}-\mathrm{W}_{\text {sphere }}=\gamma\left(\frac{\pi}{4} \mathrm{R}^{2} \mathrm{~h}\right)-\gamma\left(\frac{1}{8} \frac{4}{3} \pi \mathrm{R}^{3}\right)=\gamma \frac{\pi}{4} \mathrm{R}^{2}\left(h-\frac{2 \mathrm{R}}{3}\right)
$$

There is no need to find the (complicated) centers of pressure for these three components, for we know that the resultant on a spherical surface must pass through the center. Thus

$$
\mathrm{F}=\left[\mathrm{F}_{\mathrm{x}}^{2}+\mathrm{F}_{\mathrm{y}}^{2}+\mathrm{F}_{\mathrm{z}}^{2}\right]^{1 / 2}=\gamma \frac{\pi}{4} \mathbf{R}^{2}\left[(\mathbf{h}-2 \mathbf{R} / \mathbf{3})^{2}+\mathbf{2}(\mathbf{h}-4 \mathbf{R} / \mathbf{3} \pi)^{2}\right]^{1 / 2} \quad \text { Ans. }
$$

2.94 The 4-ft-diameter $\log (\mathrm{SG}=0.80)$ in Fig. P2.94 is 8 ft long into the paper and dams water as shown. Compute the net vertical and horizontal reactions at point C .

Fig. P2.94

Solution: With respect to the sketch at right, the horizontal components of hydrostatic force are given by

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{h} 1}=(62.4)(2)(4 \times 8)=3994 \mathrm{lbf} \\
& \mathrm{~F}_{\mathrm{h} 2}=(62.4)(1)(2 \times 8)=998 \mathrm{lbf}
\end{aligned}
$$

The vertical components of hydrostatic
 force equal the weight of water in the shaded areas:

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{v} 1}=(62.4) \frac{\pi}{2}(2)^{2}(8)=3137 \mathrm{lbf} \\
& \mathrm{~F}_{\mathrm{v} 2}=(62.4) \frac{\pi}{4}(2)^{2}(8)=1568 \mathrm{lbf}
\end{aligned}
$$

The weight of the \log is $\mathrm{W} \log =(0.8 \times 62.4) \pi(2)^{2}(8)=5018 \mathrm{lbf}$. Then the reactions at C are found by summation of forces on the log freebody:

$$
\begin{aligned}
& \sum \mathrm{F}_{\mathrm{x}}=0=3994-998-\mathrm{C}_{\mathrm{x}}, \quad \text { or } \mathrm{C}_{\mathrm{x}}=\mathbf{2 9 9 6} \mathbf{l b f} \text { Ans. } \\
& \sum \mathrm{F}_{\mathrm{z}}=0=\mathrm{C}_{\mathrm{z}}-5018+3137+1568, \quad \text { or } \mathrm{C}_{\mathrm{z}}=\mathbf{3 1 3} \mathbf{~ l b f} \text { Ans. }
\end{aligned}
$$

2.95 The uniform body A in the figure has width b into the paper and is in static equilibrium when pivoted about hinge O. What is the specific gravity of this body when (a) $\mathrm{h}=0$; and (b) $\mathrm{h}=\mathrm{R}$?

Solution: The water causes a horizontal and a vertical force on the body, as shown:

$$
\begin{aligned}
& F_{H}=\gamma \frac{R}{2} R b \quad \text { at } \frac{R}{3} \text { above } O, \\
& F_{V}=\gamma \frac{\pi}{4} R^{2} b \quad \text { at } \frac{4 R}{3 \pi} \text { to the left of } O
\end{aligned}
$$

These must balance the moment of the body weight W about O :

$$
\sum M_{O}=\frac{\gamma R^{2} b}{2}\left(\frac{R}{3}\right)+\frac{\gamma \pi R^{2} b}{4}\left(\frac{4 R}{3 \pi}\right)-\frac{\gamma_{s} \pi R^{2} b}{4}\left(\frac{4 R}{3 \pi}\right)-\gamma_{s} R h b\left(\frac{R}{2}\right)=0
$$

