$$
(12)(\pi)\left(0.08^{2}\right) / 4=(0.10)(0.3016)+\mathrm{V}_{2}(\pi)\left(0.08^{2}\right) / 4 \quad \mathbf{V}_{2}=\mathbf{6} \mathbf{~ m} / \mathbf{s} \quad \text { Ans. (b) }
$$

(c) Setting the outflow V2 to $9 \mathrm{~m} / \mathrm{s}$, the wall suction velocity is,

$$
(12)(\pi)\left(0.08^{2}\right) / 4=\left(\mathrm{v}_{\mathrm{w}}\right)(0.3016)+(9)(\pi)\left(0.08^{2}\right) / 4 \quad \mathbf{v}_{\mathrm{w}}=\mathbf{0 . 0 5} \mathbf{~ m} / \mathbf{s}=\mathbf{5} \mathbf{~ c m} / \mathbf{s} \text { out }
$$

3.11 A room contains dust at uniform concentration $\mathrm{C}=\rho$ dust ρ. It is to be cleaned by introducing fresh air at an inlet section Ai, Vi and exhausting the room air through an outlet section. Find an expression for the rate of change of dust mass in the room.

Solution: This problem is very similar to Prob. 3.9 on the previous page, except that here $\mathrm{Ci}=0$ (dustfree air). Refer to the figure in Prob. 3.9. The dust mass relation is

$$
\begin{aligned}
& \left.\frac{\mathrm{dM}_{\text {dust }}}{\mathrm{dt}}\right|_{\text {system }}=0=\frac{\mathrm{d}}{\mathrm{dt}}\left(\int_{\mathrm{CV}} \rho_{\mathrm{dust}} \mathrm{~d} v\right)+\mathrm{C}_{\mathrm{out}} \dot{\mathrm{~m}}_{\mathrm{out}}-\mathrm{C}_{\mathrm{in}} \dot{\mathrm{~m}}_{\mathrm{in}}, \\
& \text { or, since } \mathrm{C}_{\text {in }}=0 \text {, we obtain }\left.\frac{\mathrm{dM}}{\mathrm{dtus}}\right|_{\mathrm{CV}}=-\mathbf{C} \rho \mathbf{A}_{\mathbf{0}} \mathbf{V}_{\mathbf{o}} \quad \text { Ans. }
\end{aligned}
$$

To complete the analysis, we would need to make an overall fluid mass balance.
3.12 The pipe flow in Fig. P3.12 fills a cylindrical tank as shown. At time $t=0$, the water depth in the tank is 30 cm . Estimate the time required to fill the remainder of the tank.

Fig. P3.12
Solution: For a control volume enclosing the tank and the portion of the pipe below the tank,

$$
\begin{gathered}
\frac{d}{d t}\left[\int \rho d v\right]+\dot{m}_{\text {out }}-\dot{m}_{\text {in }}=0 \\
\rho \pi R^{2} \frac{d h}{d t}+(\rho A V)_{\text {out }}-(\rho A V)_{\text {in }}=0
\end{gathered}
$$

$$
\begin{gathered}
\frac{d h}{d t}=\frac{4}{998(\pi)\left(0.75^{2}\right)}\left[998\left(\frac{\pi}{4}\right)\left(0.12^{2}\right)(2.5-1.9)\right]=0.0153 \mathrm{~m} / \mathrm{s}, \\
\Delta t=0.7 / 0.0153=46 \mathbf{~ s} \text { Ans. }
\end{gathered}
$$

