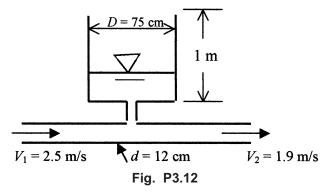
Chapter 3 • Integral Relations for a Control Volume

$$(12)(\pi)(0.08^2)/4 = (0.10)(0.3016) + V_2(\pi)(0.08^2)/4$$
 $V_2 = 6 \text{ m/s}$ Ans. (b)

(c) Setting the outflow V2 to 9 m/s, the wall suction velocity is,

 $(12)(\pi)(0.08^2)/4 = (v_w)(0.3016) + (9)(\pi)(0.08^2)/4$ $v_w = 0.05 \text{ m/s} = 5 \text{ cm/s } out$


3.11 A room contains dust at uniform concentration $C = \rho dust/\rho$. It is to be cleaned by introducing fresh air at an inlet section A_i, V_i and exhausting the room air through an outlet section. Find an expression for the rate of change of dust mass in the room.

Solution: This problem is very similar to Prob. 3.9 on the previous page, except that here $C_i = 0$ (dustfree air). Refer to the figure in Prob. 3.9. The dust mass relation is

$$\frac{dM_{dust}}{dt}\Big|_{system} = 0 = \frac{d}{dt} \left(\int_{CV} \rho_{dust} d\upsilon \right) + C_{out} \dot{m}_{out} - C_{in} \dot{m}_{in},$$

or, since $C_{in} = 0$, we obtain $\frac{dM_{dust}}{dt}\Big|_{CV} = -C\rho A_o V_o$ Ans.

To complete the analysis, we would need to make an *overall* fluid mass balance.

3.12 The pipe flow in Fig. P3.12 fills a cylindrical tank as shown. At time t = 0, the water depth in the tank is 30 cm. Estimate the time required to fill the remainder of the tank.

Solution: For a control volume enclosing the tank and the portion of the pipe below the tank,

$$\frac{d}{dt} \left[\int \rho \, dv \right] + \dot{m}_{out} - \dot{m}_{in} = 0$$
$$\rho \pi R^2 \frac{dh}{dt} + (\rho A V)_{out} - (\rho A V)_{in} = 0$$

181

$$\frac{dh}{dt} = \frac{4}{998(\pi)(0.75^2)} \left[998\left(\frac{\pi}{4}\right)(0.12^2)(2.5-1.9) \right] = 0.0153 \text{ m/s},$$
$$\Delta t = 0.7/0.0153 = \mathbf{46 s} \quad Ans.$$