3.130 When the pump in Fig. P3.130 draws $220 \mathrm{~m}^{3} / \mathrm{h}$ of water at $20^{\circ} \mathrm{C}$ from the reservoir, the total friction head loss is 5 m . The flow discharges through a nozzle to the atmosphere Estimate the pump power in kW delivered to the water.

Solution: Let " 1 " be at the reservoir surface and " 2 " be at the nozzle exit, as shown. We need to know the exit velocity:

Fig. P3. 130

$$
\mathrm{V}_{2}=\mathrm{Q} / \mathrm{A}_{2}=\frac{220 / 3600}{\pi(0.025)^{2}}=31.12 \frac{\mathrm{~m}}{\mathrm{~s}}, \quad \text { while } \mathrm{V}_{1} \approx 0 \text { (reservoir surface) }
$$

Now apply the steady flow energy equation from (1) to (2):

$$
\frac{\mathrm{p}_{1}}{\rho \mathrm{~g}}+\frac{\mathrm{V}_{1}^{2}}{2 \mathrm{~g}}+\mathrm{z}_{1}=\frac{\mathrm{p}_{2}}{\rho \mathrm{~g}}+\frac{\mathrm{V}_{2}^{2}}{2 \mathrm{~g}}+\mathrm{z}_{2}+\mathrm{h}_{\mathrm{f}}-\mathrm{h}_{\mathrm{p}}
$$

or: $0+0+0=0+(31.12)^{2} /[2(9.81)]+2+5-h_{\mathrm{p}}$, solve for $\mathrm{h}_{\mathrm{p}} \approx 56.4 \mathrm{~m}$.

$$
\text { The pump power } \begin{aligned}
\mathrm{P} & =\rho \mathrm{gQhp}=(998)(9.81)(220 / 3600)(56.4) \\
& =33700 \mathrm{~W}=\mathbf{3 3 . 7} \mathbf{~ k W} \quad \text { Ans } .
\end{aligned}
$$

3.131 When the pump in Fig. P3. 130 delivers 25 kW of power to the water, the friction head loss is 4 m . Estimate (a) the exit velocity; and (b) the flow rate.

Solution: The energy equation just above must now be written with V 2 and Q unknown:

$$
0+0+0=0+\frac{\mathrm{V}_{2}^{2}}{2 \mathrm{~g}}+2+4-\mathrm{h}_{\mathrm{p}}, \quad \text { where } \mathrm{h}_{\mathrm{p}}=\frac{\mathrm{P}}{\rho \mathrm{gQ}}=\frac{25000}{(998)(9.81) \mathrm{Q}}
$$

and where $\mathrm{V}_{2}=\frac{\mathrm{Q}}{\pi(0.025)^{2}}$. Solve numerically by iteration: $\mathrm{V} 2 \approx \mathbf{2 8 . 1} \mathbf{~ m} / \mathbf{s}$ Ans. (a)

$$
\text { and } \mathrm{Q}=(28.1) \pi(0.025)^{2} \approx 0.0552 \mathrm{~m}^{3} / \mathrm{s} \approx \mathbf{2 0 0} \mathbf{~ m}^{\mathbf{3}} / \mathbf{h r} \text { Ans. (b) }
$$

