Solution: (a) With the turbine, " 1 " is upstream:

$$
\begin{aligned}
& \frac{\mathrm{p}_{1}}{\rho \mathrm{~g}}+\frac{\mathrm{V}_{1}^{2}}{2 \mathrm{~g}}+\mathrm{z}_{1}=\frac{\mathrm{p}_{2}}{\rho \mathrm{~g}}+\frac{\mathrm{V}_{2}^{2}}{2 \mathrm{~g}}+\mathrm{z}_{2}+\mathrm{h}_{\mathrm{f}}+\mathrm{h}_{\mathrm{t}} \\
& \text { or: } \quad 0+0+150=0+0+25+17=\mathrm{h}_{\mathrm{t}}
\end{aligned}
$$

Solve for $\mathrm{ht}=108 \mathrm{ft}$. Convert $\mathrm{Q}=15000 \mathrm{gal} / \mathrm{min}=\mathbf{3 3 . 4} \mathrm{ft}^{3} / \mathrm{s}$. Then the turbine power is

$$
\mathrm{P}=\gamma \mathrm{Qh}_{\text {turb }}=(62.4)(33.4)(108)=225,000 \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{~s}} \approx 410 \mathbf{h p} \quad \text { Ans. (a) }
$$

(b) For pump operation, point " 2 " is upstream:

$$
\begin{aligned}
& \frac{\mathrm{p}_{2}}{\rho \mathrm{~g}}+\frac{\mathrm{V}_{2}^{2}}{2 \mathrm{~g}}+\mathrm{z}_{2}=\frac{\mathrm{p}_{1}}{\rho \mathrm{~g}}+\frac{\mathrm{V}_{1}^{2}}{2 \mathrm{~g}}+\mathrm{z}_{1}+\mathrm{h}_{\mathrm{f}}-\mathrm{h}_{\mathrm{p}} \\
& \text { or: } 0+0+25=0+0+150+17-\mathrm{h}_{\mathrm{p}}
\end{aligned}
$$

$$
\text { Solve for } h_{p} \approx 142 \mathrm{ft}
$$

The pump power is $\operatorname{Ppump}=\gamma \mathrm{Qhp}=(62.4)(33.4)(142)=296000 \mathrm{ft} \cdot \mathrm{lbf} / \mathrm{s}=\mathbf{5 4 0} \mathbf{~ h p} . \quad$ Ans. (b)
3.136 Water at $20^{\circ} \mathrm{C}$ is delivered from one reservoir to another through a long $8-\mathrm{cm}$ diameter pipe. The lower reservoir has a surface elevation $z 2=80 \mathrm{~m}$. The friction loss in the pipe is correlated by the formula h loss $\approx 17.5\left(V^{2} / 2 g\right)$, where V is the average velocity in the pipe. If the steady flow rate through the pipe is 500 gallons per minute, estimate the surface elevation of the higher reservoir.

Solution: We may apply Bernoulli here,

$$
\begin{gathered}
h_{f}=\frac{17.5 V^{2}}{2 g}=z_{1}-z_{2} \\
\frac{17.5}{2\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}\left[\frac{(500 \mathrm{gal} / \mathrm{min})\left(3.785 \mathrm{~m}^{3} / \mathrm{gal}\right)(\mathrm{min} / 60 \mathrm{~s})}{\frac{\pi}{4}\left(0.08^{2}\right)}\right]^{2}=z_{1}-80 \mathrm{~m} \\
z_{1} \approx \mathbf{1 1 5} \mathbf{~ m} \text { Ans. }
\end{gathered}
$$

