Solution: (a) Write the steady flow energy equation from top to bottom:

$$
\frac{p{ }^{4}}{p g}+\frac{\alpha_{1} \hat{y}_{1}^{2}}{\not 2 g}+(H+L)=\frac{p \neq}{p g}+\frac{\alpha_{2} V_{2}^{2}}{2 g}+0+h_{f}, \quad \text { or: } \quad h_{f}=\frac{32 \mu L V}{\rho g d^{2}}=H+L-\frac{\alpha_{2} V_{2}^{2}}{2 g}
$$

Noting that, in a tube, $\mathrm{Q}=\mathrm{V} \pi \mathrm{d}^{2} / 4$, we may eliminate V in favor of Q and solve for the fluid viscosity:

$$
\mu=\frac{\pi \rho g d^{4}}{128 L Q}(H+L)-\frac{\alpha_{2} \rho Q}{16 \pi L} \quad \text { Ans. (a) }
$$

(b) For the given data, converting $d=0.041 \mathrm{in}=0.00104 \mathrm{~m}, L=36.1 \mathrm{in}=0.917 \mathrm{~m}$, and $Q=$ $0.31 \mathrm{~mL} / \mathrm{s}=3.1 \mathrm{E}-7 \mathrm{~m}^{3} / \mathrm{s}$, we may substitute in the above formula (a) and calculate

$$
\begin{aligned}
\mu & =\frac{\pi(998.7)(9.81)(0.00104)^{4}}{128(0.917)(3.1 E-7)}(0.153+0.917)-\frac{2.0(998.7)(3.1 E-7)}{16 \pi(0.917)} \\
& =0.001063-0.000013 \approx \mathbf{0 . 0 0 1 0 5} \frac{\mathbf{k g}}{\mathbf{m} \cdot \mathbf{s}} \quad \text { Ans. (b) }
\end{aligned}
$$

(c) The accepted value (see Appendix Table A-1) for water at $16.5^{\circ} \mathrm{C}$ is $\mu \approx 1.11 \mathrm{E}-3 \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}$, the error in the experiment is thus about $\mathbf{- 5 . 5 \%}$. Ans. (c)
(d) If we forgot the kinetic-energy correction factor $\alpha_{2}=2.0$ for laminar flow, the calculation in part (b) above would result in

$$
\mu=0.001063-0.000007 \approx \mathbf{0 . 0 0 1 0 5 6} \mathbf{~ k g} / \mathbf{m} \cdot \mathbf{s} \text { (negligible } 0.6 \% \text { error) Ans. (d) }
$$

In this experiment, the dominant (first) term is the elevation change $(\mathrm{H}+\mathrm{L})$-the momentum exiting the tube is negligible because of the low velocity $(0.36 \mathrm{~m} / \mathrm{s})$.
3.139 The horizontal pump in Fig. P3.139 discharges $20^{\circ} \mathrm{C}$ water at $57 \mathrm{~m}^{3} / \mathrm{h}$. Neglecting losses, what power in kW is delivered to the water by the pump?

Solution: First we need to compute the velocities at sections (1) and (2):

Fig. P3.139

$$
V_{1}=\frac{Q}{A_{1}}=\frac{57 / 3600}{\pi(0.045)^{2}}=2.49 \frac{\mathrm{~m}}{\mathrm{~s}} ; \quad \mathrm{V}_{2}=\frac{\mathrm{Q}}{\mathrm{~A}_{2}}=\frac{57 / 3600}{\pi(0.015)^{2}}=22.4 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

