3.143 The insulated tank in Fig. P3.143 is to be filled from a high-pressure air supply. Initial conditions in the tank are $T=20^{\circ} \mathrm{C}$ and $p=200 \mathrm{kPa}$. When the valve is opened, the initial mass flow rate into the tank is $0.013 \mathrm{~kg} / \mathrm{s}$. Assuming an ideal gas, estimate

Fig. P3.143 the initial rate of temperature rise of the air in the tank.

Solution: For a CV surrounding the tank, with unsteady flow, the energy equation is

$$
\begin{gathered}
\frac{\mathrm{d}}{\mathrm{dt}}\left(\int \mathrm{e} \rho \mathrm{~d} v\right)-\dot{\mathrm{m}}_{\mathrm{in}}\left(\hat{\mathrm{u}}+\frac{\mathrm{p}}{\rho}+\frac{\mathrm{V}^{2}}{2}+\mathrm{gz}\right)=\dot{\mathrm{Q}}-\dot{\mathrm{W}}_{\text {shaft }}=0, \quad \text { neglect } \mathrm{V}^{2} / 2 \text { and } \mathrm{gz} \\
\text { Rewrite as } \frac{\mathrm{d}}{\mathrm{dt}}\left(\rho v \mathrm{c}_{\mathrm{v}} \mathrm{~T}\right) \approx \dot{\mathrm{m}}_{\mathrm{in}} \mathrm{c}_{\mathrm{p}} \mathrm{~T}_{\mathrm{in}}=\rho v \mathrm{c}_{\mathrm{v}} \frac{\mathrm{dT}}{\mathrm{dt}}+\mathrm{c}_{\mathrm{v}} \mathrm{~T} v \frac{\mathrm{~d} \rho}{\mathrm{dt}}
\end{gathered}
$$

where ρ and T are the instantaneous conditions inside the tank. The CV mass flow gives

$$
\frac{\mathrm{d}}{\mathrm{dt}}\left(\int \rho \mathrm{~d} v\right)-\dot{\mathrm{m}}_{\mathrm{in}}=0, \quad \text { or: } \quad v \frac{\mathrm{~d} \rho}{\mathrm{dt}}=\dot{\mathrm{m}}_{\mathrm{in}}
$$

Combine these two to eliminate $v(\mathrm{~d} \rho / \mathrm{dt})$ and use the given data for air:

$$
\left.\frac{\mathrm{dT}}{\mathrm{dt}}\right|_{\mathrm{tank}}=\frac{\dot{\mathrm{m}}\left(\mathrm{c}_{\mathrm{p}}-\mathrm{c}_{\mathrm{v}}\right) \mathrm{T}}{\rho v \mathrm{c}_{\mathrm{v}}}=\frac{(0.013)(1005-718)(293)}{\left[\frac{200000}{287(293)}\right]\left(0.2 \mathrm{~m}^{3}\right)(718)} \approx 3.2 \frac{{ }^{\circ} \mathrm{C}}{\mathrm{~s}} \quad \text { Ans. }
$$

3.144 The pump in Fig. P3.144 creates a $20^{\circ} \mathrm{C}$ water jet oriented to travel a maximum horizontal distance. System friction head losses are 6.5 m . The jet may be approximated by the trajectory of frictionless particles. What power must be delivered by the pump?

Fig. P3.144

Solution: For maximum travel, the jet must exit at $\theta=45^{\circ}$, and the exit velocity must be

$$
\mathrm{V}_{2} \sin \theta=\sqrt{2 \mathrm{~g} \Delta \mathrm{z}_{\max }} \quad \text { or: } \quad \mathrm{V}_{2}=\frac{[2(9.81)(25)]^{1 / 2}}{\sin 45^{\circ}} \approx 31.32 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

The steady flow energy equation for the piping system may then be evaluated:

$$
\mathrm{p}_{1} / \gamma+\mathrm{V}_{1}^{2} / 2 \mathrm{~g}+\mathrm{z}_{1}=\mathrm{p}_{2} / \gamma+\mathrm{V}_{2}^{2} / 2 \mathrm{~g}+\mathrm{z}_{2}+\mathrm{h}_{\mathrm{f}}-\mathrm{h}_{\mathrm{p}}
$$

or: $0+0+15=0+(31.32)^{2} /[2(9.81)]+2+6.5-h_{p}, \quad$ solve for $h_{p} \approx 43.5 \mathrm{~m}$
Then $\quad \mathrm{P}_{\text {pump }}=\gamma \mathrm{Qh}_{\mathrm{p}}=(9790)\left[\frac{\pi}{4}(0.05)^{2}(31.32)\right](43.5) \approx \mathbf{2 6 2 0 0} \mathbf{W} \quad$ Ans.
3.145 The large turbine in Fig. P3.145 diverts the river flow under a dam as shown. System friction losses are $h f=$ $3.5 V^{2} /(2 g)$, where V is the average velocity in the supply pipe. For what river flow rate in $\mathrm{m}^{3} / \mathrm{s}$ will the power extracted be 25 MW ? Which of the two possible solutions has a better "conversion efficiency"?

Fig. P3.145

Solution: The flow rate is the unknown, with the turbine power known:

$$
\begin{aligned}
& \frac{\mathrm{p}_{1}}{\gamma}+\frac{\mathrm{V}_{1}^{2}}{2 \mathrm{~g}}+\mathrm{z}_{1}=\frac{\mathrm{p}_{2}}{\gamma}+\frac{\mathrm{V}_{2}^{2}}{2 \mathrm{~g}}+\mathrm{z}_{2}+\mathrm{h}_{\mathrm{f}}+\mathrm{h}_{\text {turb }}, \quad \text { or: } 0+0+50=0+0+10+\mathrm{h}_{\mathrm{f}}+\mathrm{h}_{\text {turb }} \\
& \text { where } \mathrm{h}_{\mathrm{f}}=3.5 \mathrm{~V}_{\text {pipe }}^{2} /(2 \mathrm{~g}) \text { and } \mathrm{h}_{\mathrm{p}}=\mathrm{P}_{\mathrm{p}} /(\gamma \mathrm{Q}) \quad \text { and } \quad \mathrm{V}_{\text {pipe }}=\frac{\mathrm{Q}}{(\pi / 4) \mathrm{D}_{\text {pipe }}^{2}}
\end{aligned}
$$

Introduce the given numerical data (e.g. Dpipe $=4 \mathrm{~m}$, Ppump $=25$ E6 W) and solve:

$$
\mathrm{Q}^{3}-35410 \mathrm{Q}+2.261 \mathrm{E} 6=0, \quad \text { with roots } \mathrm{Q}=+76.5,+137.9, \text { and }-214.4 \mathrm{~m}^{3} / \mathrm{s}
$$

The negative Q is nonsense. The large $\mathrm{Q}(=137.9)$ gives large friction loss, $\mathrm{hf} \approx 21.5 \mathrm{~m}$. The smaller $\mathrm{Q}(=76.5)$ gives $\mathrm{hf} \approx 6.6 \mathrm{~m}$, about right. Select Qriver $\approx 76.5 \mathrm{~m}^{3} / \mathrm{s}$. Ans.
3.146 Kerosene at $20^{\circ} \mathrm{C}$ flows through the pump in Fig. P3.146 at $2.3 \mathrm{ft}^{3} / \mathrm{s}$. Head losses between 1 and 2 are 8 ft , and the pump delivers 8 hp to the flow. What should the mercury-manometer reading $h \mathrm{ft}$ be?

Solution: First establish the two velocities:

$$
\begin{aligned}
V_{1} & =\frac{Q}{A_{1}}=\frac{2.3 \mathrm{ft}^{3} / \mathrm{s}}{(\pi / 4)(3 / 12 \mathrm{ft})^{2}} \\
& =46.9 \frac{\mathrm{ft}}{\mathrm{~s}} ; \quad V_{2}=\frac{1}{4} V_{1}=11.7 \frac{\mathrm{ft}}{\mathrm{~s}}
\end{aligned}
$$

Fig. P3. 146

