3.183 The pump in Fig. P3. 183 draws gasoline at $20^{\circ} \mathrm{C}$ from a reservoir. Pumps are in big trouble if the liquid vaporizes (cavitates) before it enters the pump. (a) Neglecting losses and assuming a flow rate of $65 \mathrm{gal} / \mathrm{min}$, find the limitations on (x, y, z) for avoiding cavitation. (b) If pipefriction losses are included, what additional limitations might be important?

Solution: (a) From Table A.3, $\rho=680 \mathrm{~kg} /$ m^{3} and $\mathrm{p}_{\mathrm{v}}=5.51 \mathrm{E}+4$.

$$
\begin{aligned}
& z_{2}-z_{1}=y+z=\frac{p_{1}-p_{2}}{\rho g}=\frac{\left(p_{a}+\rho g y\right)-p_{v}}{\rho g} \\
& y+z=\frac{(100,000-55,100)}{(680)(9.81)}+y \quad z=6.73 \mathrm{~m}
\end{aligned}
$$

Fig. P3. 183

Thus make length z appreciably less than 6.73 (25% less), or $\mathbf{z}<\mathbf{5} \mathbf{~ m}$. Ans. (a)
(b) Total pipe length $(x+y+z)$ restricted by friction losses. Ans. (b)
3.184 For the system of Prob. 3.183, let the pump exhaust gasoline at $65 \mathrm{gal} / \mathrm{min}$ to the atmosphere through a $3-\mathrm{cm}$-diameter opening, with no cavitation, when $x=3 \mathrm{~m}, y=$ 2.5 m , and $z=2 \mathrm{~m}$. If the friction head loss is h loss $\approx 3.7\left(V^{2} / 2 g\right)$, where V is the average velocity in the pipe, estimate the horsepower required to be delivered by the pump.

Solution: Since power is a function of hp , Bernoulli is required. Thus calculate the velocity,

$$
V=\frac{Q}{A}=\frac{(65 \mathrm{gal} / \mathrm{min})\left(6.3083 E-5 \frac{\mathrm{~m}^{3} / \mathrm{s}}{\mathrm{gal} / \mathrm{min}}\right)}{\frac{\pi}{4}\left(0.03^{2}\right)}=5.8 \mathrm{~m} / \mathrm{s}
$$

The pump head may then be found,

$$
\begin{gathered}
\frac{p_{1}}{\gamma}+z_{1}=\frac{p_{2}}{\gamma}+z_{2}+h_{f}-h_{p}+\frac{V_{j}^{2}}{2 g} \\
\frac{100,000+(680)(9.81)(2.5)}{(680)(9.81)}-2.5=\frac{100,000}{(680)(9.81)}+2+\frac{3.7\left(5.8^{2}\right)}{2(9.81)}-h_{p}+\frac{\left(5.8^{2}\right)}{2(9.81)}
\end{gathered}
$$

$$
h_{p}=10.05 \mathrm{~m}
$$

$$
P=\gamma Q h_{p}=(680)(9.81)(0.0041)(10.05) \quad \mathbf{P}=\mathbf{2 7 5} \mathbf{W}=\mathbf{0 . 3 7} \mathbf{~ h p} \quad \text { Ans } .
$$

3.185 Water at $20^{\circ} \mathrm{C}$ flows through a vertical tapered pipe at $163 \mathrm{~m}^{3} / \mathrm{h}$. The entrance diameter is 12 cm , and the pipe diameter reduces by 3 mm for every 2 meter rise in elevation. For frictionless flow, if the
 entrance pressure is 400 kPa , at what elevation will the fluid pressure be 100 kPa ?

Solution: Bernouilli's relation applies,

$$
\begin{equation*}
\frac{p_{1}}{\gamma}+z_{1}+\frac{Q_{1}^{2}}{2 g A_{1}^{2}}=\frac{p_{2}}{\gamma}+z_{2}+\frac{Q_{2}^{2}}{2 g A_{2}^{2}} \tag{1}
\end{equation*}
$$

Where,

$$
\begin{equation*}
\mathrm{d}_{2}=\mathrm{d}_{1}-0.0015\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right) \tag{2}
\end{equation*}
$$

Also, $\mathrm{Q} 1=\mathrm{Q} 2=\mathrm{Q}=\left(163 \mathrm{~m}^{3} / \mathrm{h}\right)(\mathrm{h} / 3600 \mathrm{~s})=0.0453 \mathrm{~m}^{3} / \mathrm{s} ; \gamma=9790 ; \mathrm{z} 1=0.0 ; \mathrm{p} 1=400,000$; and $\mathrm{p} 2=100,000$. Using EES software to solve equations (1) and (2) simultaneously, the final height is found to be $\boldsymbol{z} \approx \mathbf{2 7 . 2} \mathbf{~ m}$. The pipe diameter at this elevation is $\mathrm{d} 2=0.079 \mathrm{~m}=$ 7.9 cm .

