3.183 The pump in Fig. P3.183 draws gasoline at 20°C from a reservoir. Pumps are in big trouble if the liquid vaporizes (cavitates) before it enters the pump. (a) Neglecting losses and assuming a flow rate of 65 gal/min, find the limitations on (x, y, z) for avoiding cavitation. (b) If pipe-friction losses are included, what additional limitations might be important?

Solution: (a) From Table A.3, $\rho = 680 \text{ kg/m}^3$ and $p_V = 5.51\text{E}+4$.

$$z_2 - z_1 = y + z = \frac{p_1 - p_2}{\rho g} = \frac{(p_a + \rho g y) - p_v}{\rho g}$$
$$y + z = \frac{(100,000 - 55,100)}{(680)(9.81)} + y \quad z = 6.73 \text{ m}$$

Thus make length z appreciably less than 6.73 (25% less), or z < 5 m. Ans. (a)

(b) Total pipe length (x + y + z) restricted by friction losses. Ans. (b)

3.184 For the system of Prob. 3.183, let the pump exhaust gasoline at 65 gal/min to the atmosphere through a 3-cm-diameter opening, with no cavitation, when x = 3 m, y = 2.5 m, and z = 2 m. If the friction head loss is $h_{loss} \approx 3.7(V^2/2g)$, where V is the average velocity in the pipe, estimate the horsepower required to be delivered by the pump.

Solution: Since power is a function of hp, Bernoulli is required. Thus calculate the velocity,

$$V = \frac{Q}{A} = \frac{(65 \text{ gal/min}) \left(6.3083E - 5\frac{\text{m}^3/\text{s}}{\text{gal/min}} \right)}{\frac{\pi}{4} (0.03^2)} = 5.8 \text{ m/s}$$

The pump head may then be found,

$$\frac{p_1}{\gamma} + z_1 = \frac{p_2}{\gamma} + z_2 + h_f - h_p + \frac{V_j^2}{2g}$$
$$\frac{100,000 + (680)(9.81)(2.5)}{(680)(9.81)} - 2.5 = \frac{100,000}{(680)(9.81)} + 2 + \frac{3.7(5.8^2)}{2(9.81)} - h_p + \frac{(5.8^2)}{2(9.81)}$$

$$h_p = 10.05 m$$

 $P = \gamma Q h_p = (680)(9.81)(0.0041)(10.05)$ **P = 275 W = 0.37 hp** Ans.

3.185 Water at 20°C flows through a vertical tapered pipe at 163 m³/h. The entrance diameter is 12 cm, and the pipe diameter reduces by 3 mm for every 2 meter rise in elevation. For frictionless flow, if the entrance pressure is 400 kPa, at what elevation will the fluid pressure be 100 kPa?

Solution: Bernouilli's relation applies,

$$\frac{p_1}{\gamma} + z_1 + \frac{Q_1^2}{2gA_1^2} = \frac{p_2}{\gamma} + z_2 + \frac{Q_2^2}{2gA_2^2}$$
(1)

Where,

$$d_2 = d_1 - 0.0015(z_2 - z_1) \tag{2}$$

Also, $Q1 = Q2 = Q = (163 \text{ m}^3/\text{h})(\text{h}/3600\text{s}) = 0.0453 \text{ m}^3/\text{s}; \gamma = 9790; z1 = 0.0; p1 = 400,000; and p2 = 100,000. Using EES software to solve equations (1) and (2) simultaneously, the final height is found to be <math>z \approx 27.2 \text{ m}$. The pipe diameter at this elevation is d2 = 0.079 m = 7.9 cm.