3.19 Water from a storm drain flows over an outfall onto a porous bed which absorbs the water at a uniform vertical velocity of $8 \mathrm{~mm} / \mathrm{s}$, as shown in Fig. P3.19. The system is 5 m deep into the paper. Find the length L of bed which will completely absorb the storm water.

Fig. P3. 19
Solution: For the bed to completely absorb the water, the flow rate over the outfall must equal that into the porous bed,

$$
\mathrm{Q}_{1}=\mathrm{Q}_{\mathrm{PB}} ; \quad \text { or } \quad(2 \mathrm{~m} / \mathrm{s})(0.2 \mathrm{~m})(5 \mathrm{~m})=(0.008 \mathrm{~m} / \mathrm{s})(5 \mathrm{~m}) \mathrm{L} \quad \mathbf{L} \approx \mathbf{5 0} \mathbf{~ m} \quad \text { Ans. }
$$

3.20 Oil (SG-0.91) enters the thrust bearing at $250 \mathrm{~N} / \mathrm{hr}$ and exits radially through the narrow clearance between thrust plates. Compute (a) the outlet volume flow in mL / s, and (b) the average outlet velocity in cm / s.

Solution: The specific weight of the oil is

Fig. P3. 20 $(0.91)(9790)=8909 \mathrm{~N} / \mathrm{m}^{3}$. Then

$$
\mathrm{Q}_{2}=\mathrm{Q}_{1}=\frac{250 / 3600 \mathrm{~N} / \mathrm{s}}{8909 \mathrm{~N} / \mathrm{m}^{3}}=7.8 \times 10^{-6} \frac{\mathrm{~m}^{3}}{\mathrm{~s}}=7.8 \frac{\mathrm{~mL}}{\mathrm{~s}} \quad \text { Ans. (a) }
$$

But also $\mathrm{Q}_{2}=\mathrm{V}_{2} \pi(0.1 \mathrm{~m})(0.002 \mathrm{~m})=7.8 \times 10^{-6}$, solve for $\mathrm{V}_{2}=1.24 \frac{\mathbf{c m}}{\mathbf{s}}$ Ans. (b)

