

Solution: (a) For incompressible flow, the volume flow is the same at piston and exit:

$$
Q=6 \frac{\mathrm{~cm}^{3}}{s}=0.366 \frac{\mathrm{in}^{3}}{s}=A_{1} V_{1}=\frac{\pi}{4}(0.75 \mathrm{in})^{2} V_{1}, \quad \text { solve } V_{\text {piston }}=\mathbf{0 . 8 3} \frac{\mathrm{in}}{\mathbf{s}} \quad \text { Ans. (a) }
$$

(b) If there is 10% leakage, the piston must deliver both needle flow and leakage:

$$
\begin{gathered}
A_{1} V_{1}=Q_{\text {needle }}+Q_{\text {clearance }}=6+0.1(6)=6.6 \frac{\mathrm{~cm}^{3}}{\mathrm{~s}}=0.403 \frac{\mathrm{in}^{3}}{\mathrm{~s}}=\frac{\pi}{4}(0.75)^{2} V_{1} \\
V_{1}=\mathbf{0 . 9 1} \frac{\mathrm{in}}{\mathbf{s}} \text { Ans. (b) }
\end{gathered}
$$

3.24 Water enters the bottom of the cone in the figure at a uniformly increasing average velocity $V=K t$. If d is very small, derive an analytic formula for the water surface rise $h(t)$, assuming $h=0$ at $t=0$.

Solution: For a control volume around the cone, the mass relation becomes

$$
\begin{gathered}
\frac{d}{d t}\left(\int \rho d v\right)-\dot{m}_{i n}=0=\frac{d}{d t}\left[\rho \frac{\pi}{3}(h \tan \theta)^{2} h\right]-\rho \frac{\pi}{4} d^{2} K t \\
\text { Integrate: } \quad \rho \frac{\pi}{3} h^{3} \tan ^{2} \theta=\rho \frac{\pi}{8} d^{2} K t^{2} \\
\text { Solve for } \mathbf{h}(\mathbf{t})=\left[\frac{\mathbf{3}}{\mathbf{8}} \mathbf{K} \mathbf{t}^{2} \mathbf{d}^{2} \boldsymbol{c o t}^{2} \boldsymbol{\theta}\right]^{1 / 3} \text { Ans. }
\end{gathered}
$$

3.25 As will be discussed in Chaps. 7 and 8 , the flow of a stream U_{o} past a blunt flat plate creates a broad low-velocity wake behind the plate. A simple model is given in Fig. P3.25, with only half of the flow shown due to symmetry. The velocity profile behind the plate is idealized as "dead air" (near-zero velocity) behind the plate, plus a higher

