Solution: Let the CV enclose the bucket and jet and let it move to the right at bucket velocity $V=\Omega R$, so that the jet enters the CV at relative speed $\left(\mathrm{V}_{\mathrm{j}}-\Omega \mathrm{R}\right)$. Then,

$$
\begin{aligned}
\sum \mathrm{F}_{\mathrm{x}} & =-\mathrm{F}_{\text {bucket }}=\dot{\mathrm{m}} \mathrm{u}_{\text {out }}-\dot{\mathrm{m}} \mathrm{u}_{\text {in }} \\
& =\dot{\mathrm{m}}\left[-\left(\mathrm{V}_{\mathrm{j}}-\Omega \mathrm{R}\right)\right]-\dot{\mathrm{m}}\left[\mathrm{~V}_{\mathrm{j}}-\Omega \mathrm{R}\right]
\end{aligned}
$$

$$
\text { or: } \quad \mathrm{F}_{\text {bucket }}=2 \dot{\mathrm{~m}}\left(\mathrm{~V}_{\mathrm{j}}-\Omega \mathrm{R}\right)=2 \rho \mathrm{~A}_{\mathrm{j}}\left(\mathrm{~V}_{\mathrm{j}}-\Omega \mathrm{R}\right)^{2}
$$

$$
\text { and the power is } \quad \mathbf{P}=\Omega R F_{\text {bucket }}=\mathbf{2} \rho \mathbf{A}_{\mathbf{j}} \Omega \mathbf{R}\left(\mathbf{V}_{\mathbf{j}}-\Omega \mathbf{R}\right)^{2} \quad \text { Ans. }
$$

Maximum power is found by differentiating this expression:

$$
\frac{\mathrm{dP}}{\mathrm{~d} \Omega}=0 \quad \text { if } \Omega \mathbf{R}=\frac{\mathbf{V}_{\mathbf{j}}}{\mathbf{3}} \quad \text { Ans. } \quad\left(\text { whence } \mathrm{P}_{\max }=\frac{8}{27} \rho \mathrm{~A}_{\mathrm{j}} \mathrm{~V}_{\mathrm{j}}^{3}\right)
$$

If there were many buckets, then the full jet mass flow would be available for work:

$$
\dot{\mathrm{m}}_{\text {available }}=\rho \mathrm{A}_{\mathrm{j}} \mathrm{~V}_{\mathrm{j}}, \quad \mathrm{P}=2 \rho \mathrm{~A}_{\mathrm{j}} \mathrm{~V}_{\mathrm{j}} \Omega \mathrm{R}\left(\mathrm{~V}_{\mathrm{j}}-\Omega \mathrm{R}\right), \quad \mathbf{P}_{\text {max }}=\frac{\mathbf{1}}{\mathbf{2}} \rho \mathbf{A}_{\mathbf{j}} \mathbf{V}_{\mathbf{j}}^{\mathbf{3}} \quad \text { at } \quad \Omega \mathbf{R}=\frac{\mathbf{V}_{\mathbf{j}}}{\mathbf{2}} \quad \text { Ans. }
$$

3.52 The vertical gate in a water channel is partially open, as in Fig. P3.52. Assuming no change in water level and a hydrostatic pressure distribution, derive an expression for the streamwise force $F x$ on one-half of the gate as a function of (ρ, h, w, θ, V_{1}). Apply your result to the case of water at $20^{\circ} \mathrm{C}, V_{1}=0.8 \mathrm{~m} / \mathrm{s}, h=2 \mathrm{~m}, w=1.5 \mathrm{~m}$, and $\theta=50^{\circ}$.

Solution: Let the CV enclose sections (1) and (2), the centerline, and the inside of the gate, as shown. The volume flows are

$$
\mathrm{V}_{1} \mathrm{~Wh}=\mathrm{V}_{2} \mathrm{Bh}, \quad \text { or: } \quad \mathrm{V}_{2}=\mathrm{V}_{1} \frac{\mathrm{~W}}{\mathrm{~B}}=\mathrm{V}_{1} \frac{1}{1-\sin \theta}
$$

