

The streamlines are logarithmic spirals moving out from the origin. [They have axisymmetry about O.] This simple distribution is often used to simulate a swirling flow such as a tornado.
4.17 A reasonable approximation for the two-dimensional incompressible laminar boundary layer on the flat surface in Fig. P4.17 is

$$
u=U\left(\frac{2 y}{\delta}-\frac{y^{2}}{\delta^{2}}\right) \text { for } y \leq \delta
$$

where $\delta \approx C x^{1 / 2}, C=$ const

Fig. P4.17
(a) Assuming a no-slip condition at the wall, find an expression for the velocity component $v(x, y)$ for $y \leq \delta$. (b) Then find the maximum value of v at the station $x=1 \mathrm{~m}$, for the particular case of airflow, when $U=3 \mathrm{~m} / \mathrm{s}$ and $\delta=1.1 \mathrm{~cm}$.

Solution: The two-dimensional incompressible continuity equation yields

$$
\begin{gathered}
\frac{\partial v}{\partial y}=-\frac{\partial u}{\partial x}=-U\left(\frac{-2 y}{\delta^{2}} \frac{d \delta}{d x}+\frac{2 y^{2}}{\delta^{3}} \frac{d \delta}{d x}\right), \quad \text { or: } \quad v=\left.2 U \frac{d \delta}{d x} \int_{0}^{y}\left(\frac{y}{\delta^{2}}-\frac{y^{2}}{\delta^{3}}\right) d y\right|_{x=c o n s t} \\
\text { or: } \quad \boldsymbol{v}=\mathbf{2} \boldsymbol{U} \frac{\boldsymbol{d} \boldsymbol{\delta}}{\boldsymbol{d} \boldsymbol{x}}\left(\frac{\boldsymbol{y}^{2}}{\mathbf{2} \boldsymbol{\delta}^{\mathbf{2}}}-\frac{\boldsymbol{y}^{3}}{\mathbf{3} \delta^{3}}\right), \quad \text { where } \frac{\boldsymbol{d} \boldsymbol{\delta}}{\boldsymbol{d x}}=\frac{\boldsymbol{C}}{\mathbf{2} \sqrt{\boldsymbol{x}}}=\frac{\boldsymbol{\delta}}{\mathbf{2 x}} \quad \text { Ans. (a) }
\end{gathered}
$$

(b) We see that v increases monotonically with y , thus v max occurs at $\mathrm{y}=\delta$:

$$
v_{\max }=\left.v\right|_{y=\delta}=\frac{\mathbf{U} \boldsymbol{\delta}}{\mathbf{6 x}}=\frac{(3 \mathrm{~m} / \mathrm{s})(0.011 \mathrm{~m})}{6(1 \mathrm{~m})}=\mathbf{0 . 0 0 5 5} \frac{\mathbf{m}}{\mathbf{s}} \quad \text { Ans. (b) }
$$

This estimate is within 4% of the exact v max computed from boundary layer theory.
4.18 A piston compresses gas in a cylinder by moving at constant speed V, as in Fig. P4.18. Let the gas density and length at $t=0$ be ρ_{0} and $L \mathrm{o}$, respectively. Let the gas velocity vary linearly from $u=V$ at the piston face to $u=0$ at $x=L$. If the gas density varies only with time, find an expression for $\rho(t)$.

Fig. P4. 18

Solution: The one-dimensional unsteady continuity equation reduces to

$$
\begin{gathered}
\frac{\partial \rho}{\partial \mathrm{t}}+\frac{\partial}{\partial \mathrm{x}}(\rho \mathrm{u})=\frac{\mathrm{d} \rho}{\mathrm{dt}}+\rho \frac{\partial \mathrm{u}}{\partial \mathrm{x}}, \quad \text { where } \mathrm{u}=\mathrm{V}\left(1-\frac{\mathrm{x}}{\mathrm{~L}}\right), \quad \mathrm{L}=\mathrm{L}_{\mathrm{o}}-\mathrm{Vt}, \quad \rho=\rho(\mathrm{t}) \text { only } \\
\text { Enter } \frac{\partial \mathrm{u}}{\partial \mathrm{x}}=-\frac{\mathrm{V}}{\mathrm{~L}} \text { and separate variables: } \int_{\rho_{\mathrm{o}}}^{\rho} \frac{\mathrm{d} \rho}{\rho}=\mathrm{V} \int_{\mathrm{o}}^{\mathrm{t}} \frac{\mathrm{dt}}{\mathrm{~L}_{\mathrm{o}}-\mathrm{Vt}}
\end{gathered}
$$

$$
\text { The solution is } \ln \left(\rho / \rho_{\mathrm{o}}\right)=-\ln \left(1-\mathrm{Vt} / \mathrm{L}_{\mathrm{o}}\right), \quad \text { or: } \quad \rho=\rho_{\mathrm{o}}\left(\frac{\mathbf{L}_{\mathbf{0}}}{\mathbf{L}_{\mathbf{0}}-\mathbf{V t}}\right) \quad \text { Ans. }
$$

4.19 An incompressible flow field has the cylindrical velocity components $v_{\theta}=C r, v_{z}=$ $K\left(R^{2}-r^{2}\right), v r=0$, where C and K are constants and $r \leq R, z \leq L$. Does this flow satisfy continuity? What might it represent physically?
Solution: We check the incompressible continuity relation in cylindrical coordinates:

$$
\frac{1}{\mathrm{r}} \frac{\partial}{\partial \mathrm{r}}\left(\mathrm{rv}_{\mathrm{r}}\right)+\frac{1}{\mathrm{r}} \frac{\partial \mathrm{v}_{\theta}}{\partial \theta}+\frac{\partial \mathrm{v}_{\mathrm{z}}}{\partial \mathrm{z}}=0=0+0+0 \quad \text { satisfied identically Ans. }
$$

This flow also satisfies (cylindrical) momentum and could represent laminar flow inside a tube of radius R whose outer wall $(\mathrm{r}=\mathrm{R})$ is rotating at uniform angular velocity.
4.20 A two-dimensional incompressible velocity field has $u=K\left(1-e^{-a y}\right)$, for $x \leq L$ and $0 \leq y \leq \infty$. What is the most general form of $v(x, y)$ for which continuity is satisfied and $v=v_{0}$ at $y=0$? What are the proper dimensions for constants K and a ?

