4.23 A tank volume V contains gas at conditions ($\rho 0, p 0, T 0$). At time $t=0$ it is punctured by a small hole of area A. According to the theory of Chap. 9, the mass flow out of such a hole is approximately proportional to A and to the tank pressure. If the tank temperature is assumed constant and the gas is ideal, find an expression for the variation of density within the tank.

Solution: This problem is a realistic approximation of the "blowdown" of a highpressure tank, where the exit mass flow is choked and thus proportional to tank pressure. For a control volume enclosing the tank and cutting through the exit jet, the mass relation is

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{~m}_{\text {tank }}\right)+\dot{\mathrm{m}}_{\text {exit }} & =0, \quad \text { or: } \quad \frac{\mathrm{d}}{\mathrm{dt}}(\rho v)=-\dot{\mathrm{m}}_{\text {exit }}=-\mathrm{CpA}, \quad \text { where } \mathrm{C}=\text { constant } \\
\text { Introduce } \quad \rho & =\frac{\mathrm{p}}{\mathrm{RT}_{\mathrm{o}}} \text { and separate variables: } \int_{\mathrm{p}_{0}}^{\mathrm{p}(\mathrm{t})} \frac{\mathrm{dp}}{\mathrm{p}}=-\frac{\mathrm{CRT}_{0} \mathrm{~A}^{\mathrm{t}}}{v} \int_{0}^{\mathrm{dt}}
\end{aligned}
$$

The solution is an exponential decay of tank density: $\mathbf{p}=\mathbf{p o} \exp (-\mathbf{C R T o A t} / \boldsymbol{v})$. Ans.
4.24 Reconsider Fig. P4.17 in the following general way. It is known that the boundary layer thickness $\delta(x)$ increases monotonically and that there is no slip at the wall $(y=0)$. Further, $u(x, y)$ merges smoothly with the outer stream flow, where $u \approx U=$ constant outside the layer. Use these facts to prove that (a) the component $v(x, y)$ is positive everywhere within the layer, (b) v increases parabolically with y very near the wall, and (c) v is a maximum at $y=\delta$.

Solution: (a) First, if δ is continually increasing with x , then u is continually decreasing with x in the boundary layer, that is, $\partial \mathrm{u} / \partial \mathrm{x}<0$, hence $\partial \mathrm{v} / \partial \mathrm{y}=-\partial \mathrm{u} / \partial \mathrm{x}>0$ everywhere. It follows that, if $\partial \mathrm{v} / \partial \mathrm{y}>0$ and $\mathrm{v}=0$ at $\mathrm{y}=0$, then $\mathbf{v}(\mathbf{x}, \mathbf{y})>\mathbf{0}$ for all $\mathbf{y} \leq \delta$. Ans. (a)

