(b) At the wall, u must be approximately linear with y , if $\tau \mathrm{v} \geq 0$:

Near wall: $\mathrm{u} \approx \mathrm{yf}(\mathrm{x})$, or $\frac{\partial \mathrm{u}}{\partial \mathrm{x}}=\mathrm{y} \frac{\mathrm{df}}{\mathrm{dx}}, \quad$ where $\frac{\mathrm{df}}{\mathrm{dx}}<0$. Then $\frac{\partial \mathrm{v}}{\partial \mathrm{y}}=-\frac{\partial \mathrm{u}}{\partial \mathrm{x}}=\left(\frac{\mathrm{df}}{\mathrm{dx}}\right) \mathrm{y}$
Thus, near the wall, $\quad \mathrm{v} \approx\left(\frac{\mathrm{df}}{\mathrm{dx}}\right) \int_{0}^{y} \mathrm{y} \mathrm{dy} \approx\left(\frac{\mathrm{df}}{\mathrm{dx}}\right) \frac{\mathrm{y}^{2}}{2}$ Parabolic Ans. (b)
(c) At $\mathrm{y}=\delta, \mathrm{u} \rightarrow \mathrm{U}$, then $\partial \mathrm{u} / \partial \mathrm{x} \approx 0$ there and thus $\partial \mathrm{v} / \partial \mathrm{y} \approx 0$, or $\mathrm{v}=$ vmax. Ans. (c)
4.25 An incompressible flow in polar coordinates is given by

$$
\begin{aligned}
\mathrm{v}_{r} & =K \cos \theta\left(1-\frac{b}{r^{2}}\right) \\
\mathrm{v}_{\theta} & =-K \sin \theta\left(1+\frac{b}{r^{2}}\right)
\end{aligned}
$$

Does this field satisfy continuity? For consistency, what should the dimensions of constants K and b be? Sketch the surface where $\mathrm{v} r=0$ and interpret.

Fig. P4.25

Solution: Substitute into plane polar coordinate continuity:

$$
\frac{1}{\mathrm{r}} \frac{\partial}{\partial \mathrm{r}}\left(\mathrm{rv}_{\mathrm{r}}\right)+\frac{1}{\mathrm{r}} \frac{\partial \mathrm{v}_{\theta}}{\partial \theta}=0 \stackrel{?}{=} \frac{1}{\mathrm{r}} \frac{\partial}{\partial \mathrm{r}}\left[\mathrm{~K} \cos \theta\left(\mathrm{r}-\frac{\mathrm{b}}{\mathrm{r}}\right)\right]+\frac{1}{\mathrm{r}} \frac{\partial}{\partial \theta}\left[-\mathrm{K} \sin \theta\left(1+\frac{\mathrm{b}}{\mathrm{r}^{2}}\right)\right]=0 \text { Satisfied }
$$

The dimensions of $K \underline{\text { must }}$ be velocity, $\{\mathrm{K}\}=\{\mathrm{L} / \mathrm{T}\}$, and $b \underline{\text { must }}$ be area, $\{\mathrm{b}\}=\left\{\mathrm{L}^{2}\right\}$. The surfaces where vr 0 are the y -axis and the circle $\mathrm{r} \quad$ (b, as shown above. The pattern represents inviscid flow of a uniform stream past a circular cylinder (Chap. 8).
4.26 Curvilinear, or streamline, coordinates are defined in Fig. P4.26, where n is normal to the streamline in the plane of the radius of curvature R. Show that Euler's frictionless momentum equation (4.36) in streamline coordinates becomes

$$
\begin{equation*}
-V \frac{\partial \theta}{\partial t}-\frac{V^{2}}{R}=-\frac{1}{\rho} \frac{\partial p}{\partial n}+g_{n} \tag{2}
\end{equation*}
$$

Fig. P4.26

Further show that the integral of Eq. (1) with respect to s is none other than our old friend Bernoulli's equation (3.76).

Solution: This is a laborious derivation, really, the problem is only meant to acquaint the student with streamline coordinates. The second part is not too hard, though. Multiply the streamwise momentum equation by $d s$ and integrate:

$$
\frac{\partial \mathrm{V}}{\partial \mathrm{t}} \mathrm{ds}+\mathrm{VdV}=-\frac{\mathrm{dp}}{\rho_{2}}+\mathrm{g}_{\mathrm{s}} \mathrm{ds}=-\frac{\mathrm{dp}}{\rho}-\mathrm{g} \sin \theta \mathrm{ds}=-\frac{\mathrm{dp}}{\rho}-\mathrm{gdz}
$$

Integrate from 1 to 2: $\int_{1}^{2} \frac{\partial \mathbf{V}}{\partial \mathrm{t}} \mathbf{d s}+\frac{\mathbf{V}_{2}^{2}-\mathbf{V}_{1}^{2}}{2}+\int_{1}^{2} \frac{\mathbf{d p}}{\rho}+\mathbf{g}\left(\mathbf{z}_{2}-\mathbf{z}_{1}\right)=\mathbf{0}$ (Bernoulli) Ans.
4.27 A frictionless, incompressible steady-flow field is given by

$$
\mathbf{V}=2 x y \mathbf{i}-y^{2} \mathbf{j}
$$

in arbitrary units. Let the density be $\rho 0=$ constant and neglect gravity. Find an expression for the pressure gradient in the x direction.

Solution: For this (gravity-free) velocity, the momentum equation is

$$
\rho\left(\mathrm{u} \frac{\partial \mathbf{V}}{\partial \mathrm{x}}+\mathrm{v} \frac{\partial \mathbf{V}}{\partial \mathrm{y}}\right)=-\nabla \mathrm{p}, \quad \text { or: } \quad \rho_{\mathrm{o}}\left[(2 \mathrm{xy})(2 \mathrm{y} \mathbf{i})+\left(-\mathrm{y}^{2}\right)(2 \mathrm{xi}-2 \mathrm{y} \mathbf{j})\right]=-\nabla \mathrm{p}
$$

Solve for $\quad \nabla \mathrm{p}=-\rho_{\mathrm{o}}\left(2 \mathrm{xy}^{2} \mathbf{i}+2 \mathrm{y}^{3} \mathbf{j}\right), \quad$ or: $\quad \frac{\partial \mathbf{p}}{\partial \mathbf{x}}=-\rho_{\mathbf{0}} \mathbf{2} \mathbf{x y}^{2} \quad$ Ans.
4.28 If z is "up," what are the conditions on constants a and b for which the velocity field $u=a y, v=b x, w=0$ is an exact solution to the continuity and Navier-Stokes equations for incompressible flow?

Solution: First examine the continuity equation:

$$
\frac{\partial \mathrm{u}}{\partial \mathrm{x}}+\frac{\partial \mathrm{v}}{\partial \mathrm{y}}+\frac{\partial \mathrm{w}}{\partial \mathrm{z}} \stackrel{?}{=} 0=\frac{\partial}{\partial \mathrm{x}}(\mathrm{ay})+\frac{\partial}{\partial \mathrm{y}}(\mathrm{bx})+\frac{\partial}{\partial \mathrm{z}}(0)=0+0+0 \quad \text { for all } a \text { and } b
$$

Given $\mathrm{g}_{\mathrm{x}}=\mathrm{gy}=0$ and $\mathrm{w}=0$, we need only examine x - and y-momentum:

$$
\begin{aligned}
& \rho\left(\mathrm{u} \frac{\partial \mathrm{u}}{\partial \mathrm{x}}+\mathrm{v} \frac{\partial \mathrm{u}}{\partial \mathrm{y}}\right)=-\frac{\partial \mathrm{p}}{\partial \mathrm{x}}+\mu\left(\frac{\partial^{2} \mathrm{u}}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \mathrm{u}}{\partial \mathrm{y}^{2}}\right)=\rho[(\mathrm{ay})(0)+(\mathrm{bx})(\mathrm{a})]=-\frac{\partial \mathrm{p}}{\partial \mathrm{x}}+\mu(0+0) \\
& \rho\left(\mathrm{u} \frac{\partial \mathrm{v}}{\partial \mathrm{x}}+\mathrm{v} \frac{\partial \mathrm{v}}{\partial \mathrm{y}}\right)=-\frac{\partial \mathrm{p}}{\partial \mathrm{y}}+\mu\left(\frac{\partial^{2} \mathrm{v}}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \mathrm{v}}{\partial \mathrm{y}^{2}}\right)=\rho[(\mathrm{ay})(\mathrm{b})+(\mathrm{bx})(0)]=-\frac{\partial \mathrm{p}}{\partial \mathrm{y}}+\mu(0+0)
\end{aligned}
$$

