4.35 From the Navier-Stokes equations for incompressible flow in polar coordinates (App. E for cylindrical coordinates), find the most general case of purely circulating motion $v_{\theta}(r), v_{r}=v_{z}=0$, for flow with no slip between two fixed concentric cylinders, as in Fig. P4.35.

Solution: The preliminary work for this

Fig. P4.35 problem is identical to Prob. 4.32 on an earlier page. That is, there are two possible solutions for purely circulating motion $v_{\theta}(\mathrm{r})$, hence

$$
\mathrm{v}_{\theta}=\mathrm{C}_{1} \mathrm{r}+\frac{\mathrm{C}_{2}}{\mathrm{r}} \text {, subject to } \mathrm{v}_{\theta}(\mathrm{a})=0=\mathrm{C}_{1} \mathrm{a}+\mathrm{C}_{2} / \mathrm{a} \text { and } \mathrm{v}_{\theta}(\mathrm{b})=0=\mathrm{C}_{1} \mathrm{~b}+\mathrm{C}_{2} / \mathrm{b}
$$

This requires $\mathbf{C} \mathbf{1}=\mathbf{C} \mathbf{2}=\mathbf{0}$, or $\mathbf{v}_{\boldsymbol{\theta}}=\mathbf{0}$ (no steady motion possible between fixed walls) Ans.
4.36 A constant-thickness film of viscous liquid flows in laminar motion down a plate inclined at angle θ, as in Fig. P4.36. The velocity profile is

$$
\mathrm{u}=C y(2 h-y) \quad \mathrm{v}=\mathrm{w}=0
$$

Find the constant C in terms of the specific weight and viscosity and the angle θ. Find the volume flux Q per unit width in terms of these parameters.

Fig. P4.36

Solution: There is atmospheric pressure all along the surface at $\mathrm{y}=\mathrm{h}$, hence $\partial \mathrm{p} / \partial \mathrm{x}=0$. The x -momentum equation can easily be evaluated from the known velocity profile:

$$
\begin{aligned}
\rho\left(\mathrm{u} \frac{\partial \mathrm{u}}{\partial \mathrm{x}}+\mathrm{v} \frac{\partial \mathrm{u}}{\partial \mathrm{y}}\right)= & -\frac{\partial \mathrm{p}}{\partial \mathrm{x}}+\rho \mathrm{g}_{\mathrm{x}}+\mu \nabla^{2} \mathrm{u}, \quad \text { or: } \quad 0=0+\rho \mathrm{g} \sin \theta+\mu(-2 \mathrm{C}) \\
& \text { Solve for } \quad \mathrm{C}=\frac{\rho \mathrm{g} \sin \theta}{2 \mu} \quad \text { Ans. (a) }
\end{aligned}
$$

The flow rate per unit width is found by integrating the velocity profile and using C :

$$
\mathrm{Q}=\int_{0}^{\mathrm{h}} \mathrm{udy}=\int_{0}^{\mathrm{h}} \mathrm{Cy}(2 \mathrm{~h}-\mathrm{y}) \mathrm{dy}=\frac{2}{3} \mathrm{Ch}^{3}=\frac{\boldsymbol{g g h}^{3} \sin \theta}{\mathbf{3 \mu}} \text { per unit width Ans. (b) }
$$

