4.7 Consider a sphere of radius R immersed in a uniform stream U_{0}, as shown in Fig. P4.7. According to the theory of Chap. 8, the fluid velocity along streamline $A B$ is given by

$$
\mathbf{V}=u \mathbf{i}=U_{\mathrm{o}}\left(1+\frac{R^{3}}{x^{3}}\right) \mathbf{i}
$$

Fig. P4.7

Find (a) the position of maximum fluid acceleration along $A B$ and (b) the time required for a fluid particle to travel from A to B.

Solution: (a) Along this streamline, the fluid acceleration is one-dimensional:

$$
\frac{\mathrm{du}}{\mathrm{dt}}=\mathrm{u} \frac{\partial \mathrm{u}}{\partial \mathrm{x}}=\mathrm{U}_{\mathrm{o}}\left(1+\mathrm{R}^{3} / \mathrm{x}^{3}\right)\left(-3 \mathrm{U}_{0} \mathrm{R}^{3} / \mathrm{x}^{4}\right)=-3 \mathrm{U}_{0} \mathrm{R}^{3}\left(\mathrm{x}^{-4}+\mathrm{R}^{3} \mathrm{x}^{-7}\right) \quad \text { for } \mathrm{x} \leq-\mathrm{R}
$$

The maximum occurs where $\mathrm{d}(\mathrm{ax}) / \mathrm{dx}=0$, or at $\mathrm{x}=-\left(7 \mathrm{R}^{3} / 4\right)^{1 / 3} \approx-\mathbf{1 . 2 0 5 R}$ Ans. (a)
(b) The time required to move along this path from A to B is computed from

$$
\begin{gathered}
u=\frac{d x}{d t}=U_{0}\left(1+R^{3} / x^{3}\right), \quad \text { or: } \quad \int_{-4 R}^{-R} \frac{d x}{1+R^{3} / x^{3}}=\int_{0}^{t} U_{0} d t, \\
\text { or: } U_{0} t=\left[x-\frac{R}{6} \ln \frac{(x+R)^{2}}{x^{2}-R x+R^{2}}+\frac{R}{\sqrt{3}} \tan ^{-1}\left(\frac{2 x-R}{R \sqrt{3}}\right)\right]_{-4 R}^{-R}=\infty
\end{gathered}
$$

It takes an infinite time to actually reach the stagnation point, where the velocity is zero. Ans. (b)
4.8 When a valve is opened, fluid flows in the expansion duct of Fig. P4.8 according to the approximation

$$
\mathbf{V}=\mathbf{i} U\left(1-\frac{x}{2 L}\right) \tanh \frac{U t}{L}
$$

Find (a) the fluid acceleration at $(x, t)=$ ($L, L / U$) and (b) the time for which the fluid acceleration at $x=L$ is zero. Why does the

Fig. P4.8 fluid acceleration become negative after condition (b)?

