Solution: Establish the variables and their dimensions:

$$
\begin{aligned}
& \mathrm{M}=\mathrm{fcn}(\mathrm{R}, \Omega, \mu, \theta) \\
& \left\{\mathrm{ML}^{2} / \mathrm{T}^{2}\right\} \quad\{\mathrm{L}\}\{1 / \mathrm{T}\}\{\mathrm{M} / \mathrm{LT}\}\{1\}
\end{aligned}
$$

Then $n=5$ and $j=3$, hence we expect $\mathrm{n}-\mathrm{j}=5-3=\mathbf{2}$ Pi groups, capable of only one reasonable arrangement, as follows:

$$
\frac{\mathbf{M}}{\mu \Omega \mathbf{R}^{3}}=\mathbf{f e n}(\theta) ; \text { if } \mathrm{M} \propto \theta, \text { then } \frac{\mathbf{M}}{\mu \Omega \theta \mathbf{R}^{3}}=\mathbf{c o n s t a n t} \text { Ans. }
$$

See Prob. 1.56 of this Manual, for an analytical solution.
5.36 The rate of heat loss, Q loss through a window is a function of the temperature difference $\Delta \mathrm{T}$, the surface area A, and the R resistance value of the window (in units of $\mathrm{ft}^{2} \cdot \mathrm{hr} \cdot{ }^{\circ} \mathrm{F} / \mathrm{Btu}$): Qloss $=\operatorname{fcn}(\Delta \mathrm{T}, A, R)$. (a) Rewrite in dimensionless form. (b) If the temperature difference doubles, how does the heat loss change?

Solution: First figure out the dimensions of R : $\{\mathrm{R}\}=\left\{\mathrm{T}^{3} \Theta / \mathrm{M}\right\}$. Then note that $n=4$ variables and $j=3$ dimensions, hence we expect only $4-3=$ one Pi group, and it is:

$$
\Pi_{1}=\frac{Q_{\text {loss }} R}{A \Delta T}=\text { Const }, \quad \text { or: } \quad \boldsymbol{Q}_{\text {loss }}=\text { Const } \frac{\boldsymbol{A} \Delta \boldsymbol{T}}{\boldsymbol{R}} \quad \text { Ans. (a) }
$$

(b) Clearly (to me), $\mathrm{Q} \propto \Delta \mathrm{T}$: if $\Delta \mathrm{t}$ doubles, Qloss also doubles. Ans. (b)

P5.37 The volume flow Q through an orifice plate is a function of pipe diameter D, pressure drop Δp across the orifice, fluid density ρ and viscosity μ, and orifice diameter d. Using D, ρ, and Δp as repeating variables, express this relationship in dimensionless form.

Solution: There are 6 variables and 3 primary dimensions (MLT), and we already know that $j=3$, because the problem thoughtfully gave the repeating variables. Use the pi theorem to find the three pi's:
$\Pi_{1}=D^{a} \rho^{b} \Delta p^{c} Q ;$ Solve for $a=-2, b=1 / 2, c=-1 / 2$. Thus $\quad \Pi_{1}=\frac{Q \rho^{1 / 2}}{D^{2} \Delta p^{1 / 2}}$
$\Pi_{2}=D^{a} \rho^{b} \Delta p^{c} d ;$ Solve for $a=-1 \quad b=0 \quad c=0$. Thus $\quad \Pi_{1}=\frac{d}{D}$
$\Pi_{3}=D^{a} \rho^{b} \Delta p^{c} \mu ;$ Solve for $a=-1, b=-1 / 2, c=-1 / 2$. Thus $\quad \Pi_{1}=\frac{\mu}{D \rho^{1 / 2} \Delta p^{1 / 2}}$

