Drag coefficient plots versus Reynolds number in a very smooth fashion and is well fit (to $\pm 1 \%$) by the power-law formula $\mathbf{C D} \approx 0.81 \operatorname{ReL}^{-\mathbf{0 . 1 7}}$.

The new velocity is $\mathrm{V}=15 \mathrm{~m} / \mathrm{s}$, and for glycerin at $20^{\circ} \mathrm{C}$ (Table A-3), take $\rho \approx 1260 \mathrm{~kg} / \mathrm{m}^{3}$ and μ $\approx 1.49 \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}$. Then compute the new Reynolds number and use our experimental correlation to estimate the drag coefficient:

$$
\begin{gathered}
\operatorname{Re}_{\text {glycerin }}=\frac{\rho V D}{\mu}=\frac{(1260)(15)(0.08)}{1.49}=1015 \text { (within the range), hence } \\
C_{D}=0.81 /(1015)^{0.17} \approx 0.250, \quad \text { or: } \quad \mathbf{F}_{\text {glycerin }}=0.250(1260)(15)^{2}(0.08)^{2}=\mathbf{4 5 3} \mathbf{N} \text { Ans. }
\end{gathered}
$$

5.7 A body is dropped on the moon ($g=1.62 \mathrm{~m} / \mathrm{s}^{2}$) with an initial velocity of $12 \mathrm{~m} / \mathrm{s}$. By using option 2 variables, Eq. (5.11), the ground impact occurs at $t^{* *}=0.34$ and $S^{* *}=0.84$. Estimate (a) the initial displacement, (b) the final displacement, and (c) the time of impact.

Solution: (a) The initial displacement follows from the "option 2" formula, Eq. (5.12):

$$
\begin{gathered}
\mathrm{S}^{* *}=\mathrm{gS}_{\mathrm{o}} / \mathrm{V}_{\mathrm{o}}^{2}+\mathrm{t}^{* *}+\frac{1}{2} \mathrm{t}^{* *^{2}}=0.84=\frac{(1.62) \mathrm{S}_{\mathrm{o}}}{(12)^{2}}+0.34+\frac{1}{2}(0.34)^{2} \\
\text { Solve for } \mathrm{S}_{\mathrm{o}} \approx \mathbf{3 9} \mathbf{~ m} \text { Ans. (a) }
\end{gathered}
$$

(b, c) The final time and displacement follow from the given dimensionless results:

$$
\begin{aligned}
& \mathrm{S}^{* *}=\mathrm{gS} / \mathrm{V}_{\mathrm{o}}^{2}=0.84=(1.62) \mathrm{S} /(12)^{2}, \quad \text { solve for } \mathrm{S}_{\text {final }} \approx \mathbf{7 5} \mathbf{~ m} \\
& \mathrm{t}^{* *}=\mathrm{gt} / \mathrm{V}_{\mathrm{o}}=0.34=(1.62) \mathrm{t} /(12), \quad \text { solve for } \mathrm{t}_{\text {impact }} \approx \mathbf{2 . 5 2} \mathbf{~ s} \\
& \text { Ans. (c) }
\end{aligned}
$$

5.8 The Morton number Mo, used to correlate bubble-dynamics studies, is a dimensionless combination of acceleration of gravity g, viscosity μ, density ρ, and surface tension coefficient Y. If Mo is proportional to g, find its form.

Solution: The relevant dimensions are $\{g\}=\left\{\mathrm{LT}^{-2}\right\},\{\mu\}=\left\{\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right\},\{\rho\}=\left\{\mathrm{ML}^{-3}\right\}$, and $\{Y\}=\left\{\mathrm{MT}^{-2}\right\}$. To have g in the numerator, we need the combination:

$$
\{M o\}=\{g\}\{\mu\}^{a}\{\rho\}^{b}\{\mathrm{Y}\}^{c}=\left\{\frac{L}{T^{2}}\right\}\left\{\frac{M}{L T}\right\}^{a}\left\{\frac{M}{L^{3}}\right\}^{b}\left\{\frac{M}{T^{2}}\right\}^{c}=M^{0} L^{0} T^{0}
$$

Solve for $\quad a=4, b=-1, c=-3, \quad$ or: $\quad \boldsymbol{M o}=\frac{\boldsymbol{g} \mu^{4}}{\rho \mathbf{Y}^{3}} \quad$ Ans.

