Solution: For water at $20^{\circ} \mathrm{C}$, take $\rho=1.94$ slug $/ \mathrm{ft}^{3}$ and $\mu=2.09 \mathrm{E}-5$ slug/ft $\cdot \mathrm{s}$. Let "a" be the small pipe and "b" the larger. For wrought iron, $\varepsilon \approx 0.00015 \mathrm{ft}$, whence $\varepsilon / d a=$ 0.0018 and $\varepsilon / d b=0.0009$. From the continuity relation,

$$
\mathrm{Q}=\mathrm{V}_{\mathrm{a}} \frac{\pi}{4} \mathrm{~d}_{\mathrm{a}}^{2}=\mathrm{V}_{\mathrm{b}} \frac{\pi}{4} \mathrm{~d}_{\mathrm{b}}^{2} \quad \text { or, since } \mathrm{d}_{\mathrm{b}}=2 \mathrm{~d}_{\mathrm{a}} \text {, we obtain } \mathrm{V}_{\mathrm{b}}=\frac{1}{4} \mathrm{~V}_{\mathrm{a}}
$$

For pipe " a " there are two minor losses: a sharp entrance, $\mathrm{K} 1=0.5$, and a sudden expansion, Fig. 6.22 , Eq. (6.101), $K 2=\left[1-(1 / 2)^{2}\right]^{2} \approx 0.56$. For pipe "b" there is one minor loss, the submerged exit, $\mathrm{K} 3 \approx 1.0$. The energy equation, with equal pressures at (1) and (2) and near zero velocities at (1) and (2), yields

$$
\begin{gathered}
\Delta \mathrm{z}=\mathrm{h}_{\mathrm{f}-\mathrm{a}}+\sum \mathrm{h}_{\mathrm{m}-\mathrm{a}}+\mathrm{h}_{\mathrm{f}-\mathrm{b}}+\sum \mathrm{h}_{\mathrm{m}-\mathrm{b}}=\frac{\mathrm{V}_{\mathrm{a}}^{2}}{2 \mathrm{~g}}\left(\mathrm{f}_{\mathrm{a}} \frac{\mathrm{~L}_{\mathrm{a}}}{\mathrm{~d}_{\mathrm{a}}}+0.5+0.56\right)+\frac{\mathrm{V}_{\mathrm{b}}^{2}}{2 \mathrm{~g}}\left(\mathrm{f}_{\mathrm{b}} \frac{\mathrm{~L}_{\mathrm{b}}}{\mathrm{~d}_{\mathrm{b}}}+1.0\right), \\
\text { or, since } \quad \mathrm{V}_{\mathrm{b}}=\mathrm{V}_{\mathrm{a}} / 4, \quad \Delta \mathrm{z}=45 \mathrm{ft}=\frac{\mathrm{V}_{\mathrm{a}}^{2}}{2(32.2)}\left[240 \mathrm{f}_{\mathrm{a}}+1.06+\frac{120}{16} \mathrm{f}_{\mathrm{b}}+\frac{1.0}{16}\right]
\end{gathered}
$$

where fa and fb are separately related to different values of Re and ε / d. Guess to start:

$$
\begin{gathered}
\mathrm{f}_{\mathrm{a}} \approx \mathrm{f}_{\mathrm{b}} \approx 0.02 \text { : then } \mathrm{V}_{\mathrm{a}}=21.85 \mathrm{ft} / \mathrm{s}, \quad \mathrm{Re}_{\mathrm{a}} \approx 169000, \quad \varepsilon / \mathrm{d}_{\mathrm{a}}=0.0018, \quad \mathrm{f}_{\mathrm{a}-2} \approx 0.0239 \\
\mathrm{~V}_{\mathrm{b}}=5.46 \mathrm{ft} / \mathrm{s}, \quad \mathrm{Re}_{\mathrm{b}} \approx 84500, \quad \varepsilon / \mathrm{d}_{\mathrm{b}}=0.0009, \quad \mathrm{f}_{\mathrm{b}-2} \approx 0.0222 \\
\text { Converges to: } \mathrm{f}_{\mathrm{a}}=0.024, \quad \mathrm{f}_{\mathrm{b}}=0.0224, \quad \mathrm{~V}_{\mathrm{a}} \approx 20.3 \mathrm{ft} / \mathrm{s}, \\
\mathrm{Q}=\mathrm{V}_{\mathrm{a}} \mathrm{~A}_{\mathrm{a}} \approx \mathbf{0 . 1 1 1} \mathbf{f t}^{3} / \mathbf{s} . \quad \text { Ans. }
\end{gathered}
$$

6.104 Reconsider the air hockey table of Problem 3.162, but with inclusion of minor losses. The table is 3 ft by 6 ft in area, with 1/16-in-diameter holes spaced every inch in a rectangular grid (2592 holes total). The required jet speed from each hole is $50 \mathrm{ft} / \mathrm{s}$. Your job is to select an appropriate blower to meet the requirements.

Fig. P3. 162

Hint: Assume that the air is stagnant in the manifold under the table surface, and assume sharp-edge inlets at each hole. (a) Estimate the pressure rise (in $1 \mathrm{bf} / \mathrm{in}^{2}$) required of the blower. (b) Compare your answer to the previous calculation in Prob. 3.162, where minor losses were ignored. Are minor losses significant?

