Solution: For water at $20^{\circ} \mathrm{C}$, take $\rho=998 \mathrm{~kg} / \mathrm{m}^{3}$ and $\mu=0.001 \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}$. For galvanized iron, take $\varepsilon \approx 0.15 \mathrm{~mm}$, hence $\varepsilon / d=0.003$. First establish minor losses as shown:

$$
\text { Protruding entrance (Fig. 6.21a), } \frac{\mathrm{L}}{\mathrm{~d}} \approx 1.2, \mathrm{~K} \approx 1 \text {; }
$$

Butterfly @ 30° (Fig 6.19) K $\approx 80 \pm 20$
The energy equation, with $\mathrm{p} 1=\mathrm{p} 2$, yields:

$$
\begin{gathered}
\Delta \mathrm{z}=\frac{\mathrm{V}^{2}}{2 \mathrm{~g}}+\mathrm{h}_{\mathrm{f}}+\sum \mathrm{h}_{\mathrm{m}}=\frac{\mathrm{V}^{2}}{2 \mathrm{~g}}\left[1+\mathrm{f} \frac{\mathrm{~L}}{\mathrm{~d}}+\sum \mathrm{K}\right]=\frac{\mathrm{V}^{2}}{2(9.81)}\left[1+\mathrm{f}\left(\frac{2}{0.05}\right)+1.0+80 \pm 20\right]=5 \mathrm{~m} \\
\text { Guess } \quad \mathrm{f} \approx 0.02, \quad \mathrm{~V} \approx 1.09 \frac{\mathrm{~m}}{\mathrm{~s}}, \quad \operatorname{Re} \approx 54300, \quad \frac{\varepsilon}{d}=0.003, \\
\mathrm{f}_{\text {new }} \approx 0.0284, \quad \mathrm{~V}_{\text {new }} \approx 1.086 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{gathered}
$$

Thus the "base" flow, for our comparison, is $\mathrm{V}_{\mathrm{o}} \approx 1.086 \mathrm{~m} / \mathrm{s}, \mathrm{Q}_{0} \approx 0.00213 \mathrm{~m}^{3} / \mathrm{s}$. If we cut off the entrance flush, we reduce Kent from 1.0 to $\underline{\mathbf{0 . 5}}$; hardly a significant reduction in view of the huge butterfly valve loss K valve ≈ 80. The energy equation is

$$
\begin{gathered}
5 \mathrm{~m}=\frac{\mathrm{V}^{2}}{2(9.81)}[1+40 \mathrm{f}+0.5+80 \pm 20], \text { solve } \mathrm{V} \approx 1.090 \frac{\mathrm{~m}}{\mathrm{~s}} \\
\mathrm{Q}=\mathbf{0 . 0 0 2 1 4} \frac{\mathbf{m}^{3}}{\mathbf{s}}(0.3 \% \text { more }) \text { Ans. (a) }
\end{gathered}
$$

If we open the butterfly wide, Kvalve decreases from 80 to only $\underline{\mathbf{0 . 3}}$, a huge reduction:

$$
\begin{gathered}
5 \mathrm{~m}=\frac{\mathrm{V}^{2}}{2(9.81)}[1+40 \mathrm{f}+1.0+0.3], \text { solve } \mathrm{V} \approx 5.4 \frac{\mathrm{~m}}{\mathrm{~s}} \\
\mathrm{Q}=\mathbf{0 . 0 1 0 6} \frac{\mathbf{m}^{3}}{\mathbf{s}}(5 \text { times more }) \text { Ans. (b) }
\end{gathered}
$$

Obviously opening the valve has a dominant effect for this system.
6.108 The water pump in Fig. P6.108 maintains a pressure of 6.5 psig at point 1. There is a filter, a half-open disk valve, and two regular screwed elbows. There are 80 ft of 4 -inch diameter commercial steel pipe. (a) If the flow rate is $0.4 \mathrm{ft}^{3} / \mathrm{s}$, what is the loss coefficient of the filter? (b) If the disk valve is wide open and Kfilter $=7$, what is the resulting flow rate?

