Solution: For water at 20°C, take $\rho = 998 \text{ kg/m}^3$ and $\mu = 0.001 \text{ kg/m} \cdot \text{s}$. For galvanized iron, take $\varepsilon \approx 0.15 \text{ mm}$, hence $\varepsilon/d = 0.003$. First establish minor losses as shown:

Protruding entrance (Fig. 6.21a),
$$\frac{L}{d} \approx 1.2$$
, $K \approx 1$
Butterfly @ 30° (Fig 6.19) $K \approx 80 \pm 20$

The energy equation, with $p_1 = p_2$, yields:

$$\Delta z = \frac{V^2}{2g} + h_f + \sum h_m = \frac{V^2}{2g} \left[1 + f \frac{L}{d} + \sum K \right] = \frac{V^2}{2(9.81)} \left[1 + f \left(\frac{2}{0.05} \right) + 1.0 + 80 \pm 20 \right] = 5 \text{ m}$$

Guess $f \approx 0.02$, $V \approx 1.09 \frac{m}{s}$, $\text{Re} \approx 54300$, $\frac{\varepsilon}{d} = 0.003$,
 $f_{\text{new}} \approx 0.0284$, $V_{\text{new}} \approx 1.086 \frac{m}{s}$

Thus the "base" flow, for our comparison, is $V_0 \approx 1.086 \text{ m/s}$, $Q_0 \approx 0.00213 \text{ m}^3/\text{s}$. If we cut off the entrance flush, we reduce Kent from 1.0 to <u>0.5</u>; hardly a significant reduction in view of the huge butterfly valve loss Kvalve ≈ 80 . The energy equation is

$$5 \text{ m} = \frac{\text{V}^2}{2(9.81)} [1 + 40\text{f} + 0.5 + 80 \pm 20], \text{ solve } \text{V} \approx 1.090 \frac{\text{m}}{\text{s}},$$
$$Q = 0.00214 \frac{\text{m}^3}{\text{s}} (0.3\% \text{ more}) \text{ Ans. (a)}$$

If we open the butterfly wide, Kvalve decreases from 80 to only **<u>0.3</u>**, a *huge* reduction:

$$5 \text{ m} = \frac{\text{V}^2}{2(9.81)} [1 + 40\text{f} + 1.0 + 0.3], \text{ solve } \text{V} \approx 5.4 \frac{\text{m}}{\text{s}},$$

 $\text{Q} = 0.0106 \frac{\text{m}^3}{\text{s}} (5 \text{ times more}) \text{ Ans. (b)}$

Obviously opening the valve has a dominant effect for this system.

;

^{6.108} The water pump in Fig. P6.108 maintains a pressure of 6.5 psig at point 1. There is a filter, a half-open disk valve, and two regular screwed elbows. There are 80 ft of 4-inch diameter commercial steel pipe. (a) If the flow rate is 0.4 ft³/s, what is the loss coefficient of the filter? (b) If the disk valve is wide open and *K*filter = 7, what is the resulting flow rate?