6.109 In Fig. P6.109 there are 125 ft of 2 -in pipe, 75 ft of 6 -in pipe, and 150 ft of 3-in pipe, all cast iron. There are three 90° elbows and an open globe valve, all flanged. If the exit elevation is zero, what horsepower is extracted by the turbine when the flow rate is $0.16 \mathrm{ft}^{3} / \mathrm{s}$ of water at $20^{\circ} \mathrm{C}$?

Fig. P6. 109

Solution: For water at $20^{\circ} \mathrm{C}$, take $\rho=1.94$ slug/ ft^{3} and $\mu=2.09 \mathrm{E}-5$ slug/ft•s. For cast iron, $\varepsilon \approx 0.00085 \mathrm{ft}$. The $2^{\prime \prime}, 6^{\prime \prime}$, and $3^{\prime \prime}$ pipes have, respectively,
(a) $\mathrm{L} / \mathrm{d}=750, \varepsilon / d=0.0051$;
(b) $\mathrm{L} / \mathrm{d}=150, \varepsilon / d=0.0017$;
(c) $\mathrm{L} / \mathrm{d}=600, \varepsilon / d=0.0034$

The flow rate is known, so each velocity, Reynolds number, and f can be calculated:

$$
\mathrm{V}_{\mathrm{a}}=\frac{0.16}{\pi(2 / 12)^{2} / 4}=7.33 \frac{\mathrm{ft}}{\mathrm{~s}} ; \quad \operatorname{Re}_{\mathrm{a}}=\frac{1.94(7.33)(2 / 12)}{2.09 \mathrm{E}-5}=113500, \quad \mathrm{f}_{\mathrm{a}} \approx 0.0314
$$

Also, $\mathrm{V}_{\mathrm{b}}=0.82 \mathrm{ft} / \mathrm{s}, \mathrm{Re}_{\mathrm{b}}=37800, \mathrm{f}_{\mathrm{c}} \approx 0.0266 ; \mathrm{V}_{\mathrm{c}}=3.26, \mathrm{Re}_{\mathrm{c}}=75600, \mathrm{f}_{\mathrm{c}} \approx 0.0287$
Finally, the minor loss coefficients may be tabulated:
sharp $2^{\prime \prime}$ entrance: $K=0.5$; three $2^{\prime \prime} 90^{\circ}$ elbows: $K=3(0.95)$
$2^{\prime \prime}$ sudden expansion: $K \approx 0.79 ; \quad 3$ " open globe valve: $K \approx 6.3$
The turbine head equals the elevation difference minus losses and the exit velocity head:

$$
\begin{aligned}
\mathrm{h}_{\mathrm{t}}= & \Delta \mathrm{z}-\sum \mathrm{h}_{\mathrm{f}}-\sum \mathrm{h}_{\mathrm{m}}-\mathrm{V}_{\mathrm{c}}^{2} /(2 \mathrm{~g}) \\
= & 100-\frac{(7.33)^{2}}{2(32.2)}[0.0314(750)+0.5+3(0.95)+0.79] \\
& -\frac{(0.82)^{2}}{2(32.2)}(0.0266)(150)-\frac{(3.26)^{2}}{2(32.2)}[0.0287(600)+6.3+1] \approx 72.8 \mathbf{f t}
\end{aligned}
$$

The resulting turbine power $=\rho \mathrm{gQht}=(62.4)(0.16)(72.8) \div 550 \approx \mathbf{1 . 3 2} \mathbf{~ h p} . \quad$ Ans.

