6.27 Let us attack Prob. 6.25 in symbolic fashion, using Fig. P6.27. All parameters are constant except the upper tank depth Z(t). Find an expression for the flow rate Q(t) as a function of Z(t). Set up a differential equation, and solve for the time t0 to drain the upper tank completely. Assume quasisteady laminar flow.

Solution: The energy equation of Prob. 6.25, using symbols only, is combined with a control-volume mass balance for the tank to give the basic differential equation for Z(t):

energy:
$$h_f = \frac{32\mu LV}{\rho g d^2} = h + Z$$
; mass balance: $\frac{d}{dt} \left[\frac{\pi}{4} D^2 Z + \frac{\pi}{4} d^2 L \right] = -Q = -\frac{\pi}{4} d^2 V$,
or: $\frac{\pi}{4} D^2 \frac{dZ}{dt} = -\frac{\pi}{4} d^2 V$, where $V = \frac{\rho g d^2}{32\mu L} (h + Z)$

Separate the variables and integrate, combining all the constants into a single "C":

$$\int_{Z_0}^{Z} \frac{dZ}{h+Z} = -C \int_{0}^{t} dt, \text{ or: } \mathbf{Z} = (\mathbf{h} + \mathbf{Z}_0) \mathbf{e}^{-Ct} - \mathbf{h}, \text{ where } \mathbf{C} = \frac{\rho \mathbf{g} \mathbf{d}^4}{32 \,\mu \mathbf{L} \mathbf{D}^2} \text{ Ans.}$$

Tank drains completely when $Z = 0$, at $\mathbf{t}_0 = \frac{1}{C} \ln \left(1 + \frac{\mathbf{Z}_0}{\mathbf{h}} \right)$ Ans.