where $\quad h_{f}=\frac{32 \mu L V}{\rho g d^{2}}=\frac{32(0.29)(25)(4.76)}{891(9.81)(0.03)^{2}}=140.5 \mathrm{~m}$, Solve for $h_{p u m p}=118.9 \mathrm{~m}$
The pump power is then given by

$$
\text { Power }=\rho g Q h_{p}=\dot{m} g h_{p}=\left(3 \frac{\mathrm{~kg}}{\mathrm{~s}}\right)\left(9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)(118.9 \mathrm{~m})=\mathbf{3 5 0 0} \mathbf{w a t t s} \quad \text { Ans } .
$$

6.34 Derive the time-averaged x-momentum equation (6.21) by direct substitution of Eqs. (6.19) into the momentum equation (6.14). It is convenient to write the convective acceleration as

$$
\frac{d \mathrm{u}}{d \mathrm{t}}=\frac{\partial}{\partial \mathrm{x}}\left(\mathrm{u}^{2}\right)+\frac{\partial}{\partial \mathrm{y}}(\mathrm{uv})+\frac{\partial}{\partial \mathrm{z}}(\mathrm{uw})
$$

which is valid because of the continuity relation, Eq. (6.14).

Solution: Into the x-momentum eqn. substitute $u=u+u^{\prime}, v=v+v^{\prime}$, etc., to obtain

$$
\begin{gathered}
\rho\left[\frac{\partial}{\partial \mathrm{x}}\left(\overline{\mathrm{u}}^{2}+2 \overline{\mathrm{u}} \mathrm{u}^{\prime}+\mathrm{u}^{\prime 2}\right)+\frac{\partial}{\partial \mathrm{y}}\left(\overline{\mathrm{v}} \overline{\mathrm{u}}+\overline{\mathrm{v}} \mathrm{u}^{\prime}+\mathrm{v}^{\prime} \overline{\mathrm{u}}+\mathrm{v}^{\prime} \mathrm{u}^{\prime}\right)+\frac{\partial}{\partial \mathrm{z}}\left(\overline{\mathrm{w}} \overline{\mathrm{u}}+\overline{\mathrm{w}} \mathrm{u}^{\prime}+\mathrm{w}^{\prime} \overline{\mathrm{u}}+\mathrm{w}^{\prime} \mathrm{u}^{\prime}\right)\right] \\
\\
=-\frac{\partial}{\partial \mathrm{x}}\left(\overline{\mathrm{p}}+\mathrm{p}^{\prime}\right)+\rho \mathrm{g}_{\mathrm{x}}+\mu\left[\nabla^{2}\left(\overline{\mathrm{u}}+\mathrm{u}^{\prime}\right)\right]
\end{gathered}
$$

Now take the time-average of the entire equation to obtain Eq. (6.21) of the text:

$$
\rho\left[\frac{\mathbf{d} \overline{\mathbf{u}}}{\mathbf{d t}}+\frac{\partial}{\partial \mathbf{x}}\left(\overline{\mathbf{u}^{\prime} \mathbf{2}}\right)+\frac{\partial}{\partial \mathbf{y}}\left(\overline{\mathbf{u}^{\prime} \mathbf{v}^{\prime}}\right)+\frac{\partial}{\partial \mathbf{z}}\left(\overline{\mathbf{u}^{\prime} \mathbf{w}^{\prime}}\right)\right]=-\frac{\partial \overline{\mathbf{p}}}{\partial \mathbf{x}}+\rho \mathbf{g}_{\mathbf{x}}+\mu \nabla^{2}(\overline{\mathbf{u}}) \quad \text { Ans. }
$$

6.35 By analogy with Eq. (6.21) write the turbulent mean-momentum differential equation for (a) the y direction and (b) the z direction. How many turbulent stress terms appear in each equation? How many unique turbulent stresses are there for the total of three directions?

Solution: You can re-derive, as in Prob. 6.34, or just permute the axes:
(a) $\mathbf{y}: \rho \frac{\mathrm{d} \overline{\mathrm{v}}}{\mathrm{dt}}=-\frac{\partial \overline{\mathrm{p}}}{\partial \mathrm{y}}+\rho \mathrm{g}_{\mathrm{y}}+\frac{\partial}{\partial \mathrm{x}}\left(\mu \frac{\partial \overline{\mathrm{v}}}{\partial \mathrm{x}}-\rho \mathrm{u}^{\prime} \mathrm{v}^{\prime}\right)+\frac{\partial}{\partial \mathrm{y}}\left(\mu \frac{\partial \overline{\mathrm{v}}}{\partial \mathrm{y}}-\rho \mathrm{v}^{\prime} \mathrm{v}^{\prime}\right)$

$$
+\frac{\partial}{\partial \mathrm{z}}\left(\mu \frac{\partial \overline{\mathrm{v}}}{\partial \mathrm{z}}-\rho \mathrm{v}^{\prime} \mathrm{w}^{\prime}\right)
$$

