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The match-point at the center gives us a log-law estimate of the shear stress:
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This is one form of “dimensionless shear stress.” The more normal form is friction
coefficient versus Reynolds number. Calculations from the log-law fit a Power-law
curve-fit expression in the range 2000 < Reh < 1ES:
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6.38 Suppose in Fig. P6.37 that # = 3 cm, the fluid is water at 20°C (p = 998 kg/m3 , U=
0.001 kg/m-s), and the flow is turbulent, so that the logarithmic law is valid. If the shear
stress in the fluid is 15 Pa, estimate V in m/s.

Solution: Just as in Prob. 6.37, apply the log-law at the center between the wall, that is,
v=h/2,u="V/2. With 7w known, we can evaluate #* immediately:
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6.39 By analogy with laminar shear, 7= u du/dy. T. V. Boussinesq in 1877 postulated
that turbulent shear could also be related to the mean-velocity gradient zturb = & du/dy,
where ¢ is called the eddy viscosity and is much larger than x. If the logarithmic-overlap
law, Eq. (6.28), is valid with 7~ 7w, show that ¢~ xpu®*y.

Solution: Differentiate the log-law, Eq. (6.28), to find du/dy, then introduce the eddy
viscosity into the turbulent stress relation:
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