Solution: For water at $20^{\circ} \mathrm{C}$, take $\rho=1.94$ slug/ft ${ }^{3}$ and $\mu=2.09 \mathrm{E}-5 \mathrm{slug} / \mathrm{ft} \cdot \mathrm{s}$. For commercial steel, take $\varepsilon \approx 0.00015 \mathrm{ft}$, or $\varepsilon / d=0.00015 /(0.5 / 12) \approx 0.0036$. Compute

$$
\begin{gathered}
\mathrm{V}=\frac{\mathrm{Q}}{\mathrm{~A}}=\frac{0.015}{(\pi / 4)(0.5 / 12)^{2}}=11.0 \frac{\mathrm{ft}}{\mathrm{~s}} ; \\
\operatorname{Re}=\frac{\rho \mathrm{Vd}}{\mu}=\frac{1.94(11.0)(0.5 / 12)}{2.09 \mathrm{E}-5} \approx 42500 \quad \varepsilon / d=0.0036, \quad \mathrm{f}_{\text {Moody }} \approx 0.0301
\end{gathered}
$$

The energy equation, with $\mathrm{p} 1=\mathrm{p} 2$ and $\mathrm{V}_{1} \approx 0$, yields an expression for surface elevation:

$$
\mathrm{h}=\mathrm{h}_{\mathrm{f}}+\frac{\mathrm{V}^{2}}{2 \mathrm{~g}}=\frac{\mathrm{V}^{2}}{2 \mathrm{~g}}\left(1+\mathrm{f} \frac{\mathrm{~L}}{\mathrm{~d}}\right)=\frac{(11.0)^{2}}{2(32.2)}\left[1+0.0301\left(\frac{80}{0.5 / 12}\right)\right] \approx \mathbf{1 1 1} \mathbf{f t} \quad \text { Ans. }
$$

6.62 Water at $20^{\circ} \mathrm{C}$ is to be pumped through 2000 ft of pipe from reservoir 1 to 2 at a rate of $3 \mathrm{ft}^{3} / \mathrm{s}$, as shown in Fig. P6.62. If the pipe is cast iron of diameter 6 in and the pump is 75 percent efficient, what horsepower pump is needed?

Solution: For water at $20^{\circ} \mathrm{C}$, take $\rho=$ 1.94 slug $/ \mathrm{ft}^{3}$ and $\mu=2.09 \mathrm{E}-5 \mathrm{slug} / \mathrm{ft} \cdot \mathrm{s}$. For cast iron, take $\varepsilon \approx 0.00085 \mathrm{ft}$, or $\varepsilon / d=$ $0.00085 /(6 / 12) \approx 0.0017$. Compute V, Re,

Fig. P6.62 and f :

$$
\begin{gathered}
\mathrm{V}=\frac{\mathrm{Q}}{\mathrm{~A}}=\frac{3}{(\pi / 4)(6 / 12)^{2}}=15.3 \frac{\mathrm{ft}}{\mathrm{~s}} \\
\mathrm{Re}=\frac{\rho \mathrm{Vd}}{\mu}=\frac{1.94(15.3)(6 / 12)}{2.09 \mathrm{E}-5} \approx 709000 \quad \varepsilon / d=0.0017, \quad \mathrm{f}_{\mathrm{Moody}} \approx 0.0227
\end{gathered}
$$

The energy equation, with $\mathrm{p} 1=\mathrm{p} 2$ and $\mathrm{V} 1 \approx \mathrm{~V} 2 \approx 0$, yields an expression for pump head:

$$
\begin{aligned}
& \mathrm{h}_{\text {pump }}=\Delta \mathrm{z}+\mathrm{f} \frac{\mathrm{~L}}{\mathrm{~d}} \frac{\mathrm{~V}^{2}}{2 \mathrm{~g}}=120 \mathrm{ft}+0.0227\left(\frac{2000}{6 / 12}\right) \frac{(15.3)^{2}}{2(32.2)}=120+330 \approx 450 \mathrm{ft} \\
& \text { Power: } \quad \mathrm{P}=\frac{\rho \mathrm{gQh}_{\mathrm{p}}}{\eta}=\frac{1.94(32.2)(3.0)(450)}{0.75}=112200 \div 550 \approx \mathbf{2 0 4} \mathbf{~ h p} \quad \text { Ans. }
\end{aligned}
$$

