6.71 It is desired to solve Prob. 6.62 for the most economical pump and cast-iron pipe system. If the pump costs $\$ 125$ per horsepower delivered to the fluid and the pipe costs $\$ 7000$ per inch of diameter, what are the minimum cost and the pipe and pump size to maintain the $3 \mathrm{ft}^{3} / \mathrm{s}$ flow rate? Make some simplifying assumptions.

Solution: For water at $20^{\circ} \mathrm{C}$, take $\rho=1.94$ slug/ ft^{3} and $\mu=2.09 \mathrm{E}-5 \mathrm{slug} / \mathrm{ft} \cdot \mathrm{s}$. For cast iron, take $\varepsilon \approx 0.00085 \mathrm{ft}$. Write the energy equation (from Prob. 6.62) in terms of Q and d :

$$
\begin{gathered}
\mathrm{P}_{\text {in hp }}=\frac{\rho \mathrm{gQ}}{550}\left(\Delta \mathrm{z}+\mathrm{h}_{\mathrm{f}}\right)=\frac{62.4(3.0)}{550}\left\{120+\mathrm{f}\left(\frac{2000}{\mathrm{~d}}\right) \frac{\left[4(3.0) / \pi \mathrm{d}^{2}\right]^{2}}{2(32.2)}\right\}=40.84+\frac{154.2 \mathrm{f}}{\mathrm{~d}^{5}} \\
\text { Cost }=\$ 125 \mathrm{P}_{\mathrm{hp}}+\$ 7000 \mathrm{~d}_{\text {inches }}=125\left(40.84+154.2 \mathrm{f} / \mathrm{d}^{5}\right)+7000(12 \mathrm{~d}), \quad \text { with } \mathrm{d} \text { in } \mathrm{ft} . \\
\text { Clean up: Cost } \approx \$ 5105+19278 \mathrm{f} / \mathrm{d}^{5}+84000 \mathrm{~d}
\end{gathered}
$$

Regardless of the (unknown) value of f, this Cost relation does show a minimum. If we assume for simplicity that f is constant, we may use the differential calculus:

$$
\begin{gathered}
\left.\frac{\mathrm{d}(\operatorname{Cost})}{\mathrm{d}(d)}\right|_{\mathrm{f} \approx \text { const }}=\frac{-5(19278) \mathrm{f}}{\mathrm{~d}^{6}}+84000, \quad \text { or } \quad \mathrm{d}_{\text {best }} \approx(1.148 \mathrm{f})^{1 / 6} \\
\text { Guess } \mathrm{f} \approx 0.02, \quad \mathrm{~d} \approx[1.148(0.02)]^{1 / 6} \approx 0.533 \mathrm{ft}, \quad \operatorname{Re}=\frac{4 \rho \mathrm{Q}}{\pi \mu \mathrm{~d}} \approx 665000, \quad \frac{\varepsilon}{\mathrm{~d}} \approx 0.00159
\end{gathered}
$$

$$
\text { Then } \left.\quad \mathrm{f}_{\text {better }} \approx 0.0224, \quad \mathrm{~d}_{\text {better }} \approx 0.543 \mathrm{ft} \text { (converged }\right)
$$

Result: dbest $\approx 0.543 \mathrm{ft} \approx \mathbf{6 . 5} \mathbf{~ i n}, \quad$ Costmin $\approx \$ 14300$ pump $+\$ 45600$ pipe $\approx \$ \mathbf{6 0 0 0 0}$. Ans.
6.72 Modify Prob. P6.57 by letting the diameter be unknown. Find the proper pipe diameter for which the pool will drain in about 2 hours flat.

Solution: Recall the data: Let $W=5 \mathrm{~m}, Y=8 \mathrm{~m}, h_{\mathrm{o}}=2 \mathrm{~m}, L=15 \mathrm{~m}$, and $\varepsilon=0$, with water, $\rho=998 \mathrm{~kg} / \mathrm{m}^{3}$ and $\mu=0.001 \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}$. We apply the same theory as Prob. 6.57:

$$
V=\sqrt{\frac{2 g h}{1+f L / D}}, \quad t_{\text {drain }} \approx \frac{4 W Y}{\pi D^{2}} \sqrt{\frac{2 h_{o}\left(1+f_{a v} L / D\right)}{g}}, \quad f_{a v}=f c n\left(\operatorname{Re}_{D}\right) \quad \text { for a smooth pipe. }
$$

For the present problem, t drain $=2$ hours and D is the unknown. Use an average value $h=$ 1 m to find $f_{\text {av. }}$. Enter these equations on EES (or you can iterate by hand) and the final results are

$$
V=2.36 \mathrm{~m} / \mathrm{s} ; \quad \operatorname{Re}_{D}=217,000 ; \quad f_{\mathrm{av}} \approx 0.0154 ; \quad D=0.092 \mathrm{~m} \approx 9.2 \mathbf{c m} \quad \text { Ans } .
$$

