6.75 You wish to water your garden with 100 ft of $\frac{5}{8}$-in-diameter hose whose roughness is 0.011 in . What will be the delivery, in $\mathrm{ft}^{3} / \mathrm{s}$, if the gage pressure at the faucet is $60 \mathrm{lbf} / \mathrm{in}^{2}$? If there is no nozzle (just an open hose exit), what is the maximum horizontal distance the exit jet will carry?

Fig. P6.75

Solution: For water, take $\rho=1.94 \mathrm{slug} / \mathrm{ft}^{3}$ and $\mu=2.09 \mathrm{E}-5 \mathrm{slug} / \mathrm{ft} \cdot \mathrm{s}$. We are given $\varepsilon / d=$ $0.011 /(5 / 8) \approx 0.0176$. For constant area hose, $\mathrm{V} 1=\mathrm{V} 2$ and energy yields

$$
\frac{\mathrm{p}_{\text {faucet }}}{\rho \mathrm{g}}=\mathrm{h}_{\mathrm{f}}, \quad \text { or: } \quad \frac{60 \times 144 \mathrm{psf}}{1.94(32.2)}=138 \mathrm{ft}=\mathrm{f} \frac{\mathrm{~L}}{\mathrm{~d}} \frac{\mathrm{~V}^{2}}{2 \mathrm{~g}}=\mathrm{f} \frac{100}{(5 / 8) / 12} \frac{\mathrm{~V}^{2}}{2(32.2)}
$$

or $\mathrm{fV}^{2} \approx 4.64$. Guess $\mathrm{f} \approx \mathrm{f}_{\text {fully rough }}=0.0463, \mathrm{~V} \approx 10.0 \frac{\mathrm{ft}}{\mathrm{s}}, \quad \mathrm{Re} \approx 48400$

$$
\text { then } \mathrm{f}_{\text {better }} \approx 0.0472, \quad \mathrm{~V}_{\text {final }} \approx \mathbf{9 . 9 1} \mathbf{~ f t} / \mathbf{s}(\text { converged })
$$

The hose delivery then is $\mathrm{Q}=(\pi / 4)(5 / 8 / 12)^{2}(9.91)=\mathbf{0 . 0 2 1 1} \mathbf{f t}^{\mathbf{3}} / \mathbf{s}$. Ans. (a)
From elementary particle-trajectory theory, the maximum horizontal distance X travelled by the jet occurs at $\theta=45^{\circ}$ (see figure) and is $\mathbf{X}=\mathrm{V}^{2} / \mathrm{g}=(9.91)^{2} /(32.2) \approx \mathbf{3 . 0 5} \mathbf{f t}$ Ans. (b), which is pitiful. You need a nozzle on the hose to increase the exit velocity.
6.76 The small turbine in Fig. P6.76 extracts 400 W of power from the water flow. Both pipes are wrought iron. Compute the flow rate $Q \mathrm{~m}^{3} / \mathrm{h}$. Sketch the EGL and HGL accurately.

Solution: For water, take $\rho=998 \mathrm{~kg} / \mathrm{m}^{3}$ and $\mu=0.001 \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}$. For wrought iron, take $\varepsilon \approx 0.046 \mathrm{~mm}$, hence $\varepsilon / d 1=0.046 / 60$ ≈ 0.000767 and $\varepsilon / d 2=0.046 / 40 \approx 0.00115$.

Fig. P6.76 The energy equation, with $\mathrm{V}_{1} \approx 0$ and $\mathrm{p} 1=$ p 2 , gives

$$
\begin{gathered}
\mathrm{z}_{1}-\mathrm{z}_{2}=20 \mathrm{~m}=\frac{\mathrm{V}_{2}^{2}}{2 \mathrm{~g}}+\mathrm{h}_{\mathrm{f} 2}+\mathrm{h}_{\mathrm{f} 1}+\mathrm{h}_{\text {turbine }}, \quad \mathrm{h}_{\mathrm{f} 1}=\mathrm{f}_{1} \frac{\mathrm{~L}_{1}}{\mathrm{~d}_{1}} \frac{\mathrm{~V}_{1}^{2}}{2 \mathrm{~g}} \quad \text { and } \quad \mathrm{h}_{\mathrm{f} 2}=\mathrm{f}_{2} \frac{\mathrm{~L}_{2}}{\mathrm{~d}_{2}} \frac{\mathrm{~V}_{2}^{2}}{2 \mathrm{~g}} \\
\text { Also, } \quad \mathrm{h}_{\text {turbine }}=\frac{\mathrm{P}}{\rho \mathrm{gQ}}=\frac{400 \mathrm{~W}}{998(9.81) \mathrm{Q}} \quad \text { and } \quad \mathrm{Q}=\frac{\pi}{4} \mathrm{~d}_{1}^{2} \mathrm{~V}_{1}=\frac{\pi}{4} \mathrm{~d}_{2}^{2} \mathrm{~V}_{2}
\end{gathered}
$$

