6.78 In Fig. P6.78 the connecting pipe is commercial steel 6 cm in diameter. Estimate the flow rate, in $\mathrm{m}^{3} / \mathrm{h}$, if the fluid is water at $20^{\circ} \mathrm{C}$. Which way is the flow?

Solution: For water, take $\rho=998 \mathrm{~kg} / \mathrm{m}^{3}$ and $\mu=0.001 \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}$. For commercial steel, take $\varepsilon \approx 0.046 \mathrm{~mm}$, hence $\varepsilon / d=$ $0.046 / 60 \approx 0.000767$. With $\mathrm{p} 1, \mathrm{~V} 1$, and V_{2} all ≈ 0, the energy equation between

Fig. P6.78 surfaces (1) and (2) yields

$$
\begin{gathered}
0+0+\mathrm{z}_{1} \approx \frac{\mathrm{p}_{2}}{\rho \mathrm{~g}}+0+\mathrm{z}_{2}+\mathrm{h}_{\mathrm{f}}, \quad \text { or } \quad \mathrm{h}_{\mathrm{f}}=15-\frac{200000}{998(9.81)} \approx-5.43 \mathrm{~m}(\text { flow to left }) \leftarrow \\
\text { Guess turbulent flow: } \mathrm{h}_{\mathrm{f}}=\mathrm{f} \frac{\mathrm{~L}}{\mathrm{~d}} \frac{\mathrm{~V}^{2}}{2 \mathrm{~g}}=\mathrm{f} \frac{50}{0.06} \frac{\mathrm{~V}^{2}}{2(9.81)}=5.43, \quad \text { or: } \quad \mathrm{fV}^{2} \approx 0.1278 \\
\frac{\varepsilon}{d}=0.00767, \quad \text { guess } \mathrm{f}_{\text {fully rough }} \approx 0.0184, \quad \mathrm{~V} \approx\left(\frac{0.1278}{0.0184}\right)^{1 / 2} \approx 2.64 \frac{\mathrm{~m}}{\mathrm{~s}}, \quad \operatorname{Re}=158000 \\
\mathrm{f}_{\text {better }} \approx 0.0204, \quad \mathrm{~V}_{\text {better }}=2.50 \frac{\mathrm{~m}}{\mathrm{~s}}, \quad \mathrm{Re}_{\text {better }} \approx 149700, \quad \mathrm{f}_{\text {3rd iteration }} \approx 0.0205 \text { (converged) }
\end{gathered}
$$

The iteration converges to

$$
\mathrm{f} \approx 0.0205, \mathrm{~V} \approx 2.49 \mathrm{~m} / \mathrm{s}, \mathrm{Q}=(\pi / 4)(0.06)^{2}(2.49)=0.00705 \mathrm{~m}^{3} / \mathrm{s}=\mathbf{2 5} \mathbf{~ m}^{\mathbf{3}} / \mathrm{h} \leftarrow \quad \text { Ans }
$$

6.79 A garden hose is used as the return line in a waterfall display at the mall. In order to select the proper pump, you need to know the hose wall roughness, which is not supplied by the manufacturer. You devise a simple experiment: attach the hose to the drain of an above-ground pool whose surface is 3 m above the hose outlet. You estimate the minor loss coefficient in the entrance region as 0.5 , and the drain valve has a minorloss equivalent length of 200 diameters when fully open. Using a bucket and stopwatch, you open the valve and measure a flow rate of $2.0 \mathrm{E}-4 \mathrm{~m}^{3} / \mathrm{s}$ for a hose of inside diameter 1.5 cm and length 10 m . Estimate the roughness height of the hose inside surface.

Solution: First evaluate the average velocity in the hose and its Reynolds number:

$$
V=\frac{Q}{A}=\frac{2.0 E-4}{(\pi / 4)(0.015)^{2}}=1.13 \frac{\mathrm{~m}}{\mathrm{~s}}, \quad R e_{d}=\frac{\rho V d}{\mu}=\frac{998(1.13)(0.015)}{0.001}=16940 \text { (turbulent) }
$$

