6.81 The pump in Fig. P6.80 is used to deliver gasoline at $20^{\circ} \mathrm{C}$ through 350 m of $30-\mathrm{cm}$-diameter galvanized iron pipe. Estimate the resulting flow rate, in $\mathrm{m}^{3} / \mathrm{s}$. (Note that the pump head is now in meters of gasoline.)

Solution: For gasoline, take $\rho=680 \mathrm{~kg} / \mathrm{m}^{3}$ and $\mu=2.92 \mathrm{E}-4 \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}$. For galvanized iron, take $\varepsilon \approx 0.15 \mathrm{~mm}$, hence $\varepsilon / d=0.15 / 300 \approx 0.0005$. Head loss matches pump head:

$$
\begin{gathered}
\mathrm{h}_{\mathrm{f}}=\frac{8 \mathrm{fLQ}{ }^{2}}{\pi^{2} \mathrm{gd}^{5}}=\frac{8 \mathrm{f}(350) \mathrm{Q}^{2}}{\pi^{2}(9.81)(0.3)^{5}}=11901 \mathrm{fQ}^{2}=\mathrm{h}_{\text {pump }} \approx 80-20 \mathrm{Q}^{2}, \quad \mathrm{Q}^{2}=\frac{80}{20+11901 \mathrm{f}} \\
\text { Guess } \quad \mathrm{f}_{\text {rough }} \approx 0.017, \quad \mathrm{Q} \approx 0.600 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}, \\
\operatorname{Re}_{\text {better }} \approx 5.93 \mathrm{E} 6, \quad \frac{\varepsilon}{d}=0.0005, \quad \mathrm{f}_{\text {better }} \approx 0.0168
\end{gathered}
$$

This converges to $\mathrm{f} \approx 0.0168, \quad \mathrm{Re} \approx 5.96 \mathrm{E} 6, \quad \mathbf{Q} \approx \mathbf{0 . 6 0 3} \mathbf{m}^{\mathbf{3}} / \mathbf{s}$. Ans.
6.82 The pump in Fig. P6.80 has its maximum efficiency at a head of 45 m . If it is used to pump ethanol at $20^{\circ} \mathrm{C}$ through 200 m of commercial-steel pipe, what is the proper pipe diameter for maximum pump efficiency?

Solution: For ethanol, take $\rho=789 \mathrm{~kg} / \mathrm{m}^{3}$ and $\mu=1.2 \mathrm{E}-3 \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}$. For commercial steel, take $\varepsilon \approx 0.046 \mathrm{~mm}$, hence $\varepsilon / d=0.046 /(1000 d)$. We know the head and flow rate:

$$
\mathrm{h}_{\text {pump }}=45 \mathrm{~m} \approx 80-20 \mathrm{Q}^{2}, \text { solve for } \mathrm{Q} \approx 1.323 \mathrm{~m}^{3} / \mathrm{s} .
$$

Then $h_{p}=h_{f}=\frac{8 f L Q^{2}}{\pi^{2} \mathrm{gd}^{5}}=\frac{8 \mathrm{f}(200)(1.323)^{2}}{\pi^{2}(9.81) \mathrm{d}^{5}}=\frac{28.92 \mathrm{f}}{\mathrm{d}^{5}}=45 \mathrm{~m}, \quad$ or: $\quad \mathrm{d} \approx 0.915 \mathrm{f}^{1 / 5}$

$$
\begin{gathered}
\text { Guess } \quad \mathrm{f} \approx 0.02, \quad \mathrm{~d} \approx 0.915(0.02)^{1 / 5} \approx 0.419 \mathrm{~m}, \\
\operatorname{Re}=\frac{4 \rho \mathrm{Q}}{\pi \mu \mathrm{~d}} \approx 2.6 \mathrm{E} 6, \quad \frac{\varepsilon}{d} \approx 0.000110
\end{gathered}
$$

Then $\quad \mathrm{f}_{\text {better }} \approx 0.0130, \quad \mathrm{~d}_{\text {better }} \approx 0.384 \mathrm{~m}, \quad \operatorname{Re}_{\text {better }} \approx 2.89 \mathrm{E} 6,\left.\quad \frac{\varepsilon}{d}\right|_{\text {better }} \approx 0.000120$
This converges to $\mathrm{f} \approx 0.0129, \mathrm{Re} \approx 2.89 \mathrm{E} 6, \mathbf{d} \approx \mathbf{0 . 3 8 4} \mathbf{m}$. Ans.

