6.81 The pump in Fig. P6.80 is used to deliver gasoline at 20°C through 350 m of 30-cm-diameter galvanized iron pipe. Estimate the resulting flow rate, in m^3/s . (Note that the pump head is now in meters of gasoline.)

Solution: For gasoline, take $\rho = 680 \text{ kg/m}^3$ and $\mu = 2.92\text{E}-4 \text{ kg/m}\cdot\text{s}$. For galvanized iron, take $\varepsilon \approx 0.15$ mm, hence $\varepsilon/d = 0.15/300 \approx 0.0005$. Head loss matches pump head:

$$h_{f} = \frac{8fLQ^{2}}{\pi^{2}gd^{5}} = \frac{8f(350)Q^{2}}{\pi^{2}(9.81)(0.3)^{5}} = 11901fQ^{2} = h_{pump} \approx 80 - 20Q^{2}, \quad Q^{2} = \frac{80}{20 + 11901f}$$

Guess $f_{rough} \approx 0.017, \quad Q \approx 0.600 \frac{m^{3}}{s},$
 $Re_{better} \approx 5.93E6, \quad \frac{\varepsilon}{d} = 0.0005, \quad f_{better} \approx 0.0168$
This converges to $f \approx 0.0168, \quad Re \approx 5.96E6, \quad Q \approx 0.603 \text{ m}^{3}/\text{s}.$ Ans.

6.82 The pump in Fig. P6.80 has its maximum efficiency at a head of 45 m. If it is used to pump ethanol at 20°C through 200 m of commercial-steel pipe, what is the proper pipe diameter for maximum pump efficiency?

Solution: For ethanol, take $\rho = 789 \text{ kg/m}^3$ and $\mu = 1.2\text{E}-3 \text{ kg/m} \cdot \text{s}$. For commercial steel, take $\varepsilon \approx 0.046$ mm, hence $\varepsilon/d = 0.046/(1000d)$. We know the head and flow rate:

$$h_{pump} = 45 \text{ m} \approx 80 - 20Q^2$$
, solve for $Q \approx 1.323 \text{ m}^3/\text{s}$.

Then
$$h_p = h_f = \frac{8fLQ^2}{\pi^2 gd^5} = \frac{8f(200)(1.323)^2}{\pi^2 (9.81)d^5} = \frac{28.92f}{d^5} = 45 \text{ m}, \text{ or: } d \approx 0.915f^{1/5}$$

Guess $f \approx 0.02$, $d \approx 0.915(0.02)^{1/5} \approx 0.419 \text{ m},$
 $Re = \frac{4\rho Q}{\pi\mu d} \approx 2.6E6, \quad \frac{\varepsilon}{d} \approx 0.000110$

Then $f_{\text{better}} \approx 0.0130$, $d_{\text{better}} \approx 0.384$ m, $\text{Re}_{\text{better}} \approx 2.89\text{E6}$, $\frac{c}{d}|_{\text{better}} \approx 0.000120$

This converges to $f \approx 0.0129$, Re $\approx 2.89E6$, $d \approx 0.384$ m. Ans.