ENSC 283 Week \# 4, Tutorial \# 3- Hydrostatic Forces

Problem 1: In the figure the surface $A B$ is a circular arc with a radius of 2 m . The distance $D B$ is 4 m . If water is the liquid supported by the surface and if atmospheric pressure prevails on the other side of $A B$, determine the magnitude and line of action of the resultant hydrostatic force on $A B$ per unit length.

Solution

Step 1: Write out what you are required to solve for (this is so you don't forget to answer everything the question is asking for)

Find:

- the magnitude and line of action of the hydrostatic force F on $A B$

Step 2: Prepare a data table

Data	Value	Unit
$D B$	4	m
r	2	m

Step 3: Calculations

The vertical component is equal to the weight of water in volume $A O C D B$:

$$
\begin{align*}
& W_{O C D B}=\gamma A_{O C D B} \times 1=\left(9810 \frac{\mathrm{~N}}{\mathrm{~m}^{3}}\right)(4 \mathrm{~m})(2 \mathrm{~m})(1 \mathrm{~m})=78.480 \mathrm{kN} \tag{Eq1}\\
& \begin{array}{c}
W_{A O B}=\gamma A_{A O B} \times 1=\gamma\left(\frac{1}{4} \pi r^{2}\right) \times 1=\left(9810 \frac{\mathrm{~N}}{\mathrm{~m}^{3}}\right) \times \frac{\pi}{4}(2 \mathrm{~m})^{2}(1 \mathrm{~m}) \\
=30.819 \mathrm{kN}
\end{array} \tag{Eq2}
\end{align*}
$$

Therefore, the vertical component is:

$$
\begin{equation*}
F_{V}=W_{O C D B}+W_{A O B}=109.299 \mathrm{kN} \tag{Eq3}
\end{equation*}
$$

The line of action of the vertical component acts through the centroid of the volume of water considered above, and this is calculated by taking moments about the z-axis.

$$
\begin{align*}
F_{V} \cdot x_{C G}= & W_{O C D B} \cdot x_{C G, 1}+W_{A O B} \cdot x_{C G, 2} \tag{Eq4}\\
& =(78.480 \mathrm{kN})(1 \mathrm{~m})+(30.819 \mathrm{kN})\left(\frac{4 \times 2}{3 \pi} \mathrm{~m}\right) \\
= & 104.640 \mathrm{kNm} \\
& x_{C G}=\frac{104.640 \mathrm{kNm}}{109.299 \mathrm{kN}}=0.9574 \mathrm{~m} \tag{Eq5}
\end{align*}
$$

Note: $x_{C G, 1}$ and $x_{C G, 2}=4 r /(3 \pi)$ are the centroidal distances of $O C D B$ and $A O B$ with respect to the z-axis, respectively.

The magnitude of the horizontal component can be expressed as:

$$
\begin{equation*}
F_{H}=\gamma h_{C G} A_{p r o j}=\left(9810 \frac{\mathrm{~N}}{\mathrm{~m}^{3}}\right)(5 \mathrm{~m})\left(2 \mathrm{~m}^{2}\right)=98.1 \mathrm{kN} \tag{Eq6}
\end{equation*}
$$

The location of the line of action of the horizontal component is given by:

$$
\begin{align*}
y_{C P, p r o j}= & -\frac{I_{x x} \sin \theta}{h_{C G} A_{\text {proj }}}=-\frac{\left(\frac{1}{12}\right)(1 \mathrm{~m})(2 \mathrm{~m})^{3} \sin 90^{\circ}}{(5 \mathrm{~m})\left(2 \mathrm{~m}^{2}\right)} \tag{Eq7}\\
& =-0.0667 \mathrm{~m}
\end{align*}
$$

Note that $y_{C P, p r o j}$ is calculated with respect to the center of $A_{\text {proj }}$, therefore,

$$
\begin{equation*}
Y_{C P, p r o j}=-1 m-0.0667 m=-1.0667 m \tag{Eq8}
\end{equation*}
$$

where, $Y_{C P, p r o j}$ is the location with respect to the x-axis.
The resultant hydrostatic force is:

$$
\begin{gather*}
F=\left(F_{H}^{2}+F_{V}^{2}\right)^{1 / 2}=\left[(98.1 \mathrm{kN})^{2}+(109.299 \mathrm{kN})^{2}\right]^{1 / 2} \tag{Eq9}\\
=146.867 \mathrm{kN}
\end{gather*}
$$

This resultant force is shown in the following figure.

It should be considered that the resultant force acts along $z=-(\tan \theta) x$.

