ENSC 283 Week \# 5, Tutorial \# 4 - Conservation of Mass

Problem 1: The open tank in the figure contains water at $20^{\circ} \mathrm{C}$. For incompressible flow, (a) derive an analytic expression for $d h / d t$ in terms of $\left(Q_{1}, Q_{2}, Q_{3}\right)$. (b) If h is constant, determine V_{2} for the given data if $V_{1}=$ $3 \mathrm{~m} / \mathrm{s}$ and $Q_{3}=0.01 \mathrm{~m}^{3} / \mathrm{s}$.

Solution

Step 1: Write out what you are required to solve for (this is so you don't forget to answer everything the question is asking for)

Find:

- dh/dt as a function of Q_{1}, Q_{2}, Q_{3}
- V_{2}

Step 2: Prepare a data table

Data	Value	Unit
Q_{3}	0.01	$\mathrm{~m}^{3} / \mathrm{s}$
V_{1}	3	$\mathrm{~m} / \mathrm{s}$
D_{1}	5	cm
D_{2}	7	cm

Step 3: State your assumptions (you may have to add to your list of assumptions as you proceed in the problem)

Assumptions:

1) Incompressible flow ($\rho=$ Constant)
2) The tank and pipes have circular cross-sections

Step 4: Calculations

(a) For a control volume enclosing the tank, conservation of mass can be expressed as:

$$
\begin{equation*}
\frac{d}{d t}\left(\int_{C V} \rho d \vartheta\right)+\rho\left(Q_{2}-Q_{1}-Q_{3}\right)=0 \tag{Eq1}
\end{equation*}
$$

The volume of the tank is:

$$
\begin{equation*}
\vartheta=\frac{\pi d^{2}}{4} h \tag{Eq2}
\end{equation*}
$$

Substituting Eq2 into Eq1, we get:

$$
\begin{equation*}
\rho \frac{\pi d^{2}}{4} \frac{d h}{d t}+\rho\left(Q_{2}-Q_{1}-Q_{3}\right)=0 \tag{Eq3}
\end{equation*}
$$

Finally,

$$
\begin{equation*}
\frac{d h}{d t}=\frac{Q_{1}+Q_{3}-Q_{2}}{\left(\pi d^{2} / 4\right)} \tag{Eq4}
\end{equation*}
$$

(b) If h is constant, then

$$
\begin{gather*}
\frac{d h}{d t}=0=Q_{2}-Q_{1}-Q_{3} \rightarrow Q_{2}=Q_{1}+Q_{3} \rightarrow \frac{\pi}{4}(0.07)^{2}\left(V_{2}\right) \tag{Eq5}\\
=0.01+\frac{\pi}{4}(0.05)^{2}(3) \\
V_{2}=4.13 \mathrm{~m} / \mathrm{s} \tag{Eq6}
\end{gather*}
$$

Problem 2: The jet pump in the figure injects water at $U_{1}=40 \mathrm{~m} / \mathrm{s}$ through a 3-in pipe and entrains a secondary flow of water $U_{2}=3 \mathrm{~m} / \mathrm{s}$ in the annular region around the small pipe. The two flows become fully mixed downstream, where U_{3} is approximately constant. For steady incompressible flow, compute U_{3} in m / s.

Solution

Step 1: Write out what you are required to solve for (this is so you don't forget to answer everything the question is asking for)

Find:

- The velocity in fully mixed region, U_{3} in m / s

Step 2: Prepare a data table

Data	Value	Unit
D_{1}	3	in
D_{2}	10	in
U_{1}	40	$\mathrm{~m} / \mathrm{s}$
U_{2}	3	$\mathrm{~m} / \mathrm{s}$

Step 3: State your assumptions (you may have to add to your list of assumptions as you proceed in the problem)

Assumptions:

1) Steady incompressible flow

Step 4: Calculations

First modify the units:

$$
\begin{align*}
& D_{1}=(3 \mathrm{in})\left(\frac{2.54 \times 10^{-2} \mathrm{~m}}{1 \mathrm{in}}\right)=0.0762 \mathrm{~m} \tag{Eq1}\\
& D_{2}=(10 \mathrm{in})\left(\frac{2.54 \times 10^{-2} \mathrm{~m}}{1 \mathrm{in}}\right)=0.254 \mathrm{~m} \tag{Eq2}
\end{align*}
$$

For incompressible flow, the volume flows at inlet and exit must match:

$$
\begin{align*}
& Q_{1}+Q_{2}= Q_{3} \tag{Eq3}\\
& \rightarrow \frac{\pi}{4} D_{1}^{2} U_{1}+\frac{\pi}{4}\left[D_{2}^{2}-D_{1}^{2}\right] U_{2}=\frac{\pi}{4} D_{2}^{2} U_{3} \\
& \rightarrow \frac{\pi}{4}(0.0762)^{2}(40)+\frac{\pi}{4}\left[(0.254)^{2}-(0.0762)^{2}\right](3) \\
&=\frac{\pi}{4}(0.254)^{2} U_{3}
\end{align*}
$$

Solving the above equation, we get:

$$
\begin{equation*}
U_{3}=6.33 \mathrm{~m} / \mathrm{s} \tag{Eq4}
\end{equation*}
$$

