ENSC 283 Week \# 8, Tutorial \# 5 - First Law Analysis

Problem 1: A tank of $0.1 \mathrm{~m}^{3}$ volume is connected to a high-pressure air line; both line and tank are initially at a uniform temperature of $20^{\circ} \mathrm{C}$. The initial tank gage pressure is 100 kPa . The absolute line pressure is 2.0 MPa ; the line is large enough so that its temperature and pressure may assumed constant. The tank temperature is monitored by a fast-response thermocouple. At the instant after the valve is opened, the tank temperature rises at the rate of $0.05^{\circ} \mathrm{C} / \mathrm{s}$. Determine the instantaneous flow rate of air into the tank if heat transfer is neglected.

Solution

Step 1: Write out what you are required to solve for (this is so you don't forget to answer everything the question is asking for)

Find:

- \dot{m}, the instantaneous flow rate of air into the tank

Step 2: Prepare a data table

Data	Value	Unit
$\vartheta_{\text {tank }}$	0.1	$\mathrm{~m}^{3}$
$p_{\text {tank }}$ (gage)	100	$k P a$
T	20	${ }^{\circ} \mathrm{C}$
\dot{m}	0.05	${ }^{\circ} \mathrm{C} / \mathrm{s}$

Step 3: State your assumptions (you may have to add to your list of assumptions as you proceed in the problem)

Assumptions:

1) $\dot{Q}=0$
2) $\dot{W}_{s}=0$
3) $\dot{W}_{v}=0$
4) $\dot{W}_{\text {other }}=0$
5) Velocities in line and tank are small
6) Neglect potential energy
7) Properties uniform in tank
8) Ideal gas, $p=\rho R T$, $d \hat{u}=c_{v} d T$

Step 4: Calculations

The control volume is shown in the figure. Applying the energy equation to the CV, we get:
$\dot{Q}-\dot{W}_{s}-\dot{W}_{v}-\dot{W}_{o t h e r}=\frac{\partial}{\partial t}\left(\int_{C V} e \rho d \vartheta\right)+\int_{C S}(e+p v) \rho(\boldsymbol{V} \cdot \boldsymbol{n}) d A$
The left hand side of the above equation is zero, see the assumptions. The total energy can be written as:

$$
\begin{equation*}
e=\hat{u}+\frac{V^{2}}{2}+g z=\widehat{u} \tag{Eq2}
\end{equation*}
$$

Applying the assumptions and substituting Eq2 into Eq1, we obtain:

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\int_{C V} \hat{u}_{\text {tank }} \rho d \vartheta\right)+(\hat{u}+p v)_{\text {line }}(-\rho V A)=0 \tag{Eq3}
\end{equation*}
$$

This expresses the fact the gain in energy of the tank is due to influx of fluid energy (in the form of enthalpy $h=\widehat{u}+p v$) from the line. We are interested in the initial instant, when T is uniform at $20^{\circ} \mathrm{C}$, so $\hat{u}_{\text {tank }}=\hat{u}_{\text {line }}=\hat{u}$, the internal energy at T; also, $p v_{\text {line }}=R T$, and

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\int_{C V} \hat{u} \rho d \vartheta\right)+(\hat{u}+R T)(-\rho V A)=0 \tag{Eq4}
\end{equation*}
$$

Since tank properties are uniform, $\partial / \partial t$ may be replaced by $d / d t$, and

$$
\begin{equation*}
\frac{d}{d t}(\hat{u} M)=(\hat{u}+R T) \dot{m} \tag{Eq5}
\end{equation*}
$$

where M is the instantaneous mass in the tank and $\dot{m}=\rho V A$ is the mass flow rate. This equation can be written as:

$$
\begin{equation*}
\widehat{u} \frac{d M}{d t}+M \frac{d \widehat{u}}{d t}=\hat{u} \dot{m}+R T \dot{m} \tag{Eq6}
\end{equation*}
$$

The term $d M / d t$ may be evaluated from continuity:

$$
\begin{gather*}
\frac{\partial}{\partial t}\left(\int_{C V} \rho d \vartheta\right)+\int_{C S} \rho(\boldsymbol{V} \cdot \boldsymbol{n}) d A=0 \tag{Eq7}\\
\frac{d M}{d t}+(-\rho V A)=0 \text { or } \frac{d M}{d t}=\dot{m} \tag{Eq8}
\end{gather*}
$$

Substituting in Eq6 gives

$$
\begin{equation*}
\hat{u} \dot{m}+M c_{v} \frac{d T}{d t}=\hat{u} \dot{m}+R T \dot{m} \tag{Eq9}
\end{equation*}
$$

or

$$
\begin{equation*}
\dot{m}=\frac{M c_{v} \frac{d T}{d t}}{R T}=\frac{\rho_{\operatorname{tank}} \vartheta_{\operatorname{tank}} c_{v} \frac{d T}{d t}}{R T} \tag{Eq10}
\end{equation*}
$$

At $t=0, p_{\text {tank }}=100 \mathrm{kPa}(\mathrm{gage})$, and

$$
\begin{aligned}
& \rho_{\text {tank }}=\frac{p_{\text {tank }}}{R T}=(1+1.0135) 10^{5} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\mathrm{kg} \cdot \mathrm{~K}}{287 \mathrm{~N} . \mathrm{m}} \times \frac{1}{293.15 \mathrm{~K}} \\
&=2.393 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

Substituting into Eq10, we obtain

$$
\begin{gathered}
\dot{m}=\left(2.393 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right)\left(0.1 \mathrm{~m}^{3}\right)\left(717 \frac{\mathrm{~N} . \mathrm{m}}{\mathrm{~kg} \cdot \mathrm{~K}}\right)\left(0.05 \frac{\mathrm{~K}}{\mathrm{~s}}\right)\left(\frac{\mathrm{kg} \cdot \mathrm{~K}}{287 \mathrm{~N} . \mathrm{m}}\right) \\
\times\left(\frac{1}{293.15 \mathrm{~K}}\right)\left(\frac{1000 \mathrm{~g}}{\mathrm{~kg}}\right)=\mathbf{0 . 1 0 2 \mathrm { g } / \mathrm { s }}
\end{gathered}
$$

