ENSC 283 Week \# 13, Tutorial \# 9 - Capillary Effect: Use of Dimensional Matrix

Problem: When a small tube is dipped into a pool of liquid, surface tension causes a meniscus to form at the free surface, which is elevated or depressed depending on the contact angle at the liquid-solid-gas interface. Experiments indicate that the magnitude of this capillary effect, Δh, is a function of the tube diameter, D, liquid specific weight, γ, and surface tension, σ.
 Determine the number of independent Π parameters that can be formed and obtain a set.

Solution

Step 1: Write out what you are required to solve for (this is so you don't forget to answer everything the question is asking for)

Find:

- Number of independent Π parameters
- One set of Π parameters

Step 2: Calculations

1) Write the function Δh and count variables:

$$
\Delta h=f(D, \gamma, \sigma) \text { there are four variables }(\mathrm{n}=4)
$$

2) Choose primary dimensions (use both $\{M, L, T$ \}and $\{F, L, T\}$ dimensions to illustrate the problem in determining j).
3) (a) $\{M, L, T\}$
(b) $\{F, L, T\}$

Δh	D	γ	σ
$\{L\}$	$\{L\}$	$\left\{\frac{M}{L^{2} T^{2}}\right\}$	$\left\{\frac{M}{T^{2}}\right\}$

$r=3$ primary dimensions

Δh	D	γ	σ
$\{L\}$	$\{L\}$	$\left\{\frac{F}{L^{3}}\right\}$	$\left\{\frac{F}{L}\right\}$

$r=2$ primary dimensions

Thus for each set of primary dimensions we ask, "Is j (number of repeating parameters) equal to r ?"
Initially guess $j=r$ and try to find power product values of pi groups. For $\{M, L, T\}$ system we cannot find all power values, i.e. the power values are dependent to each other, but for $\{F, L, T\}$ system all power values can be found. Thus:

$\{M, L, T\}$	$\{F, L, T\}$
$j=2$	$j=2$ $j \neq r$
$j=r$	

4) $j=2$. Choose D, γ as repeating parameters.
5) $n-j=2$ dimensionless groups will result.

$$
\begin{aligned}
& \Pi_{1}=D^{a} \gamma^{b} \Delta h \text { and } \\
& (L)^{a}\left(\frac{M}{L^{2} t^{2}}\right)^{b}(L)=M^{0} L^{0} t^{0}
\end{aligned}
$$

$$
\left.\begin{array}{lr}
M: \quad b+0=0 \\
L: & a-2 b+1=0 \\
t: & -2 b+0=0
\end{array}\right\} \quad a=0
$$

Therefore, $\Pi_{1}=\frac{\Delta h}{D}$

$$
\begin{aligned}
& \Pi_{2}=D^{c} \gamma^{d} \sigma \text { and } \\
& (L)^{c}\left(\frac{M}{L^{2} t^{2}}\right)^{d}\left(\frac{M}{t^{2}}\right)=M^{0} L^{0} t^{0}
\end{aligned}
$$

4) $j=2$. Choose D, γ as repeating parameters.
5) $n-j=2$ dimensionless groups will result.

$$
\begin{gathered}
\Pi_{1}=D^{e} \gamma^{f} \Delta h \text { and } \\
(L)^{e}\left(\frac{F}{L^{3}}\right)^{f}(L)=F^{0} L^{0} t^{0} \\
\left.F: \quad \begin{array}{l}
\text { F } \quad 0 \\
L: e-3 f+1=0
\end{array}\right\} e=-1
\end{gathered}
$$

Therefore, $\Pi_{1}=\frac{\Delta h}{D}$

$$
\begin{gathered}
\Pi_{2}=D^{g} \gamma^{h} \sigma \text { and } \\
(L)^{g}\left(\frac{F}{L^{3}}\right)^{h}\left(\frac{F}{L}\right)=F^{0} L^{0} t^{0}
\end{gathered}
$$

$\left.\begin{array}{lrl}\text { M: } & d+1=0 \\ L: & c-2 d=0 \\ t: & -2 d-2=0\end{array}\right\} \begin{aligned} & d=-1 \\ & c=-2\end{aligned}$
Therefore, $\Pi_{2}=\frac{\sigma}{D^{2} \gamma}$
6) Check, using F, L, t dimensions

$$
\begin{array}{lll}
\Pi_{1}=\frac{\Delta h}{D} & \text { and } & \frac{L}{L}=1 \\
\Pi_{2}=\frac{\sigma}{D^{2} \gamma} \text { and } & \frac{F}{L} \frac{1}{L^{2}} \frac{L^{3}}{F}=1
\end{array}
$$

$$
\left.\begin{array}{l}
F: \quad h+1=0 \\
L:
\end{array}\right\} \begin{aligned}
& h=-1 \\
& g=-2 h-1=0
\end{aligned}
$$

Therefore, $\Pi_{2}=\frac{\sigma}{D^{2} \gamma}$
Check, using M, L, t dimensions
$\Pi_{1}=\frac{\Delta h}{D}$ and $\frac{L}{L}=1$
$\Pi_{2}=\frac{\sigma}{D^{2} \gamma}$ and $\frac{M}{t^{2}} \frac{1}{L^{2}} \frac{L^{2} t^{2}}{M}=1$

Therefore, both systems of dimensions yield the same dimensionless Π parameters. The predicted functional relationship is

$$
\Pi_{1}=f\left(\Pi_{2}\right) \text { or } \frac{\Delta h}{D}=f\left(\frac{\sigma}{D^{2} \gamma}\right)
$$

Notes:

1) This result is reasonable on physical grounds. The fluid is static; we would not expect time to be an important dimension.
2) The analytical relation for this problem is $\Delta h=4 \sigma \cos \theta /(\rho g D), \theta$ is the contact angle. Hence $\Delta h / D$ is directly proportional to $\sigma / D^{2} \gamma$.
