ENSC 388

Assignment \#1 (Basic Concepts)

Assignment date: Wednesday Sept. 16, 2009
Due date: Wednesday Sept. 23, 2009

Problem 1: (Static Pressure)

Both a gage and a manometer are attached to a gas tank to measure its pressure. If the reading on the pressure gage is 80 kPa , determine the distance between the two fluid levels of the manometer if the fluid is (a) mercury ($\rho=13,600 \mathrm{~kg} / \mathrm{m}^{3}$) or (b) water ($\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$).

Problem 2: (Buoyancy)
Balloons are often filled with helium gas because it weighs only about one-seventh of what air weighs under identical conditions. The buoyancy force which can be expressed as $F_{B}=\rho_{\text {air }} V_{\text {balloon }}$ will push the balloon upward. If the balloon has diameter of 10 m and carries two people, 70 kg each, determine (a) the acceleration of the balloon when it is first released and (b) the maximum amount of load, in kg ,
the balloon can carry. Assume the density of air is $\rho=1.16 \mathrm{~kg} / \mathrm{m}^{3}$, and neglect the weight of the ropes and the cage. (Answers: $16.5 \mathrm{~m} / \mathrm{s}^{2}, 520.6 \mathrm{~kg}$)

$\mathrm{m}=140 \mathrm{~kg}$
Problem 3: (Hydrostatic pressure)
The lower half of a $10-\mathrm{m}$-high cylindrical container is filled with water ($\rho=1000$ $\mathrm{kg} / \mathrm{m}^{3}$) and the upper half with oil that has a specific gravity of 0.85 . Determine the pressure difference between the top and bottom of the cylinder. (Answer: 90.7 kPa)

