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Second Law of Thermodynamics and Thermal Energy Reservoirs

7-1C  Water is not a fuel; thus the claim is false.

7-2C  Transferring 5 kWh of heat to an electric resistance wire and producing 5 kWh of electricity.

7-3C  An electric resistance heater which consumes 5 kWh of electricity and supplies 6 kWh of heat to a room.

7-4C Transferring 5 kWh of heat to an electric resistance wire and producing 6 kWh of electricity.

7-5C  No.  Heat cannot flow from a low-temperature medium to a higher temperature medium.

7-6C  A thermal-energy reservoir is a body that can supply or absorb finite quantities of heat isothermally.  Some examples are the oceans, the lakes, and the atmosphere.

7-7C  Yes.  Because the temperature of the oven remains constant no matter how much heat is transferred to the potatoes.

7-8C  The surrounding air in the room that houses the TV set.

Heat Engines and Thermal Efficiency

7-9C  No.  Such an engine violates the Kelvin-Planck statement of the second law of thermodynamics.

7-10C  Heat engines are cyclic devices that receive heat from a source, convert some of it to work, and reject the rest to a sink.

7-11C  Method (b).  With the heating element in the water, heat losses to the surrounding air are minimized, and thus the desired heating can be achieved with less electrical energy input.

7-12C  No.  Because 100% of the work can be converted to heat.

7-13C  It is expressed as "No heat engine can exchange heat with a single reservoir, and produce an equivalent amount of work".

7-14C (a)  No,  (b)  Yes.  According to the second law, no heat engine can have and efficiency of 100%.

7-15C  No.  Such an engine violates the Kelvin-Planck statement of the second law of thermodynamics.

7-16C  No.  The Kelvin-Plank limitation applies only to heat engines; engines that receive heat and convert some of it to work.

7-17 The power output and thermal efficiency of a power plant are given. The rate of heat rejection is to be determined, and the result is to be compared to the actual case in practice.

Assumptions  1 The plant operates steadily. 2 Heat losses from the working fluid at the pipes and other components are negligible.  

Analysis  The rate of heat supply to the power plant is determined from the thermal efficiency relation,
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The rate of heat transfer to the river water is determined from the first law relation for a heat engine,
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In reality the amount of heat rejected to the river will be lower since part of the heat will be lost to the surrounding air from the working fluid as it passes through the pipes and other components.

7-18 The heat input and thermal efficiency of a heat engine are given. The work output of the heat engine is to be determined.

Assumptions  1 The plant operates steadily. 2 Heat losses from the working fluid at the pipes and other components are negligible.  

Analysis  Applying the definition of the thermal efficiency to the heat engine,
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7-19E The work output and heat rejection of a heat engine that propels a ship are given. The thermal efficiency of the engine is to be determined.
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Assumptions  1 The plant operates steadily. 2 Heat losses from the working fluid at the pipes and other components are negligible.  

Analysis  Applying the first law to the heat engine gives
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Substituting this result into the definition of the thermal efficiency,
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7-20 The work output and heat input of a heat engine are given. The heat rejection is to be determined.
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Assumptions  1 The plant operates steadily. 2 Heat losses from the working fluid at the pipes and other components are negligible.  

Analysis  Applying the first law to the heat engine gives
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7-21 The heat rejection and thermal efficiency of a heat engine are given. The heat input to the engine is to be determined.
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Assumptions  1 The plant operates steadily. 2 Heat losses from the working fluid at the pipes and other components are negligible.  

Analysis  According to the definition of the thermal efficiency as applied to the heat engine,
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which when rearranged gives
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7-22 The power output and fuel consumption rate of a power plant are given. The thermal efficiency is to be determined.

Assumptions  The plant operates steadily.  

Properties  The heating value of coal is given to be 30,000 kJ/kg.  
Analysis The rate of heat supply to this power plant is
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Then the thermal efficiency of the plant becomes
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7-23 The power output and fuel consumption rate of a car engine are given. The thermal efficiency of the engine is to be determined.

Assumptions  The car operates steadily.  

Properties  The heating value of the fuel is given to be 44,000 kJ/kg.  
Analysis The mass consumption rate of the fuel is

[image: image241.wmf]L

Q

&

     
[image: image11.wmf]kg/h 

 

22.4

)

L/h

 

28

)(

kg/L

 

0.8

(

)

(

fuel

fuel

=

=

=

V

&

&

r

m


The rate of heat supply to the car is
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Then the thermal efficiency of the car becomes
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7-24E The power output and thermal efficiency of a solar pond power plant are given. The rate of solar energy collection is to be determined.
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Assumptions  The plant operates steadily.  

Analysis The rate of solar energy collection or the rate of heat supply to the power plant is determined from the thermal efficiency relation to be
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7-25 The United States produces about 51 percent of its electricity from coal at a conversion efficiency of about 34 percent. The amount of heat rejected by the coal-fired power plants per year is to be determined. 

Analysis Noting that the conversion efficiency is 34%, the amount of heat rejected by the coal plants per year is  
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7-26 The projected power needs of the United States is to be met by building inexpensive but inefficient coal plants or by building expensive but efficient  IGCC plants. The price of coal that will enable the IGCC plants  to recover their cost difference from fuel savings in 5 years is to be determined. 
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Assumptions  1 Power is generated continuously by either plant at full capacity. 2 The time value of money (interest, inflation, etc.) is not considered.  

Properties  The heating value of the coal is given to be 28(106 kJ/ton.  

Analysis For a power generation capacity of 150,000 MW, the construction costs of coal and IGCC plants and their difference are
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The amount of electricity produced by either plant in 5 years is 
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The amount of fuel needed to generate a specified amount of power can be determined from
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Then the amount of coal needed to generate this much electricity by each plant and their difference are
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 to pay for the construction cost difference of $30 billion, the price of coal should be  
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Therefore, the IGCC plant becomes attractive when the price of coal is above $49.4 per ton. 

7-27 EES Problem 7-26 is reconsidered. The price of coal is to be investigated for varying simple payback periods, plant construction costs, and operating efficiency.

Analysis The problem is solved using EES, and the solution is given below.  
"Knowns:"
HeatingValue = 28E+6 [kJ/ton]

W_dot = 150E+6 [kW]

{PayBackPeriod = 5 [years]

eta_coal = 0.34

eta_IGCC = 0.45

CostPerkW_Coal = 1300 [$/kW]

CostPerkW_IGCC=1500 [$/kW]}
"Analysis:"
"For a power generation capacity of 150,000 MW, the construction costs of coal 

and IGCC plants and their difference are"
ConstructionCost_coal = W_dot *CostPerkW_Coal 

ConstructionCost_IGCC= W_dot *CostPerkW_IGCC 

ConstructionCost_diff = ConstructionCost_IGCC - ConstructionCost_coal 

"The amount of electricity produced by either plant in 5 years is "
W_ele = W_dot*PayBackPeriod*convert(year,h) 

"The amount of fuel needed to generate a specified amount of power can be determined 

from the plant efficiency and the heating value of coal."
"Then the amount of coal needed to generate this much electricity by each plant and their difference are"
 
"Coal Plant:"




eta_coal = W_ele/Q_in_coal



Q_in_coal = m_fuel_CoalPlant*HeatingValue*convert(kJ,kWh) 


"IGCC Plant:"




eta_IGCC = W_ele/Q_in_IGCC



Q_in_IGCC = m_fuel_IGCCPlant*HeatingValue*convert(kJ,kWh) 


DELTAm_coal = m_fuel_CoalPlant - m_fuel_IGCCPlant 

"For  to pay for the construction cost difference of $30 billion, the price of coal should be"  

UnitCost_coal = ConstructionCost_diff /DELTAm_coal 

"Therefore, the IGCC plant becomes attractive when the price of coal is above $49.4 per ton. "

SOLUTION

ConstructionCost_coal=1.950E+11 [dollars]

ConstructionCost_diff=3.000E+10 [dollars]

ConstructionCost_IGCC=2.250E+11 [dollars]
CostPerkW_Coal=1300 [dollars/kW]

CostPerkW_IGCC=1500 [dollars/kW]


DELTAm_coal=6.073E+08 [tons]

eta_coal=0.34 









eta_IGCC=0.45 

HeatingValue=2.800E+07 [kJ/ton]




m_fuel_CoalPlant=2.484E+09 [tons]

m_fuel_IGCCPlant=1.877E+09 [tons]



PayBackPeriod=5 [years]

Q_in_coal=1.932E+13 [kWh]





Q_in_IGCC=1.460E+13 [kWh]

UnitCost_coal=49.4 [dollars/ton]




W_dot=1.500E+08 [kW]

W_ele=6.570E+12 [kWh]
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7-28 The projected power needs of the United States is to be met by building inexpensive but inefficient coal plants or by building expensive but efficient IGCC plants. The price of coal that will enable the IGCC plants  to recover their cost difference from fuel savings in 3 years is to be determined. 
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Assumptions  1 Power is generated continuously by either plant at full capacity. 2 The time value of money (interest, inflation, etc.) is not considered.  

Properties  The heating value of the coal is given to be 28(106 kJ/ton.  

Analysis For a power generation capacity of 150,000 MW, the construction costs of coal and IGCC plants and their difference are
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The amount of electricity produced by either plant in 3 years is 
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The amount of fuel needed to generate a specified amount of power can be determined from
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Then the amount of coal needed to generate this much electricity by each plant and their difference are
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For 
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 to pay for the construction cost difference of $30 billion, the price of coal should be  
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Therefore, the IGCC plant becomes attractive when the price of coal is above $82.2 per ton. 
7-29 A coal-burning power plant produces 300 MW of power. The amount of coal consumed during a one-day period and the rate of air flowing through the furnace are to be determined.

Assumptions 1 The power plant operates steadily. 2 The kinetic and potential energy changes are zero.

Properties The heating value of the coal is given to be 28,000 kJ/kg. 

Analysis (a) The rate and the amount of heat inputs to the power plant are
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The amount and rate of coal consumed during this period are
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(b) Noting that the air-fuel ratio is 12, the rate of air flowing through the furnace is
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Refrigerators and Heat Pumps

7-30C  The difference between the two devices is one of purpose.  The purpose of a refrigerator is to remove heat from a cold medium whereas the purpose of a heat pump is to supply heat to a warm medium.

7-31C  The difference between the two devices is one of purpose.  The purpose of a refrigerator is to remove heat from a refrigerated space whereas the purpose of an air-conditioner is remove heat from a living space.

7-32C  No.  Because the refrigerator consumes work to accomplish this task.

7-33C  No.  Because the heat pump consumes work to accomplish this task.

7-34C  The coefficient of performance of a refrigerator represents the amount of heat removed from the refrigerated space for each unit of work supplied.  It can be greater than unity.

7-35C  The coefficient of performance of a heat pump represents the amount of heat supplied to the heated space for each unit of work supplied.  It can be greater than unity.

7-36C  No.  The heat pump captures energy from a cold medium and carries it to a warm medium.  It does not create it.

7-37C  No.  The refrigerator captures energy from a cold medium and carries it to a warm medium.  It does not create it.

7-38C  No device can transfer heat from a cold medium to a warm medium without requiring a heat or work input from the surroundings.

7-39C  The violation of one statement leads to the violation of the other one, as shown in Sec. 7-4, and thus we conclude that the two statements are equivalent.

7-40 The COP and the refrigeration rate of a refrigerator are given. The power consumption and the rate of heat rejection are to be determined.

Assumptions  The refrigerator operates steadily.  
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Analysis (a) Using the definition of the coefficient of performance, the power input to the refrigerator is determined to be
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(b) The heat transfer rate to the kitchen air is determined from the energy balance,
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7-41E The heat absorption, the heat rejection, and the power input of a commercial heat pump are given. The COP of the heat pump is to be determined.
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Assumptions  The heat pump operates steadily.  

Analysis Applying the definition of the heat pump coefficient of performance to this heat pump gives
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7-42 The COP and the power input of a residential heat pump are given. The rate of heating effect is to be determined.

Assumptions  The heat pump operates steadily.  

Analysis Applying the definition of the heat pump coefficient of performance to this heat pump gives
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7-43 The cooling effect and the COP of a refrigerator are given. The power input to the refrigerator is to be determined.
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Assumptions  The refrigerator operates steadily.  

Analysis Rearranging the definition of the refrigerator coefficient of performance and applying the result to this refrigerator gives
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7-44 The cooling effect and the COP of a refrigerator are given. The power input to the refrigerator is to be determined.
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Assumptions  The refrigerator operates steadily.  

Analysis Rearranging the definition of the refrigerator coefficient of performance and applying the result to this refrigerator gives
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7-45 The COP and the work input of a heat pump are given. The heat transferred to and from this heat pump are to be determined.
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Assumptions  The heat pump operates steadily.  

Analysis Applying the definition of the heat pump coefficient of performance,
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Adapting the first law to this heat pump produces
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7-46E The COP and the refrigeration rate of an ice machine are given. The power consumption is to be determined.
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Assumptions  The ice machine operates steadily.  

Analysis The cooling load of this ice machine is
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Using the definition of the coefficient of performance, the power input to the ice machine system is determined to be
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7-47 The COP and the power consumption of a refrigerator are given. The time it will take to cool 5 watermelons is to be determined.

Assumptions 1 The refrigerator operates steadily.  2 The heat gain of the refrigerator through its walls, door, etc. is negligible. 3 The watermelons are the only items in the refrigerator to be cooled.

Properties  The specific heat of watermelons is given to be c = 4.2 kJ/kg.(C.  
Analysis The total amount of heat that needs to be removed from the watermelons is
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The rate at which this refrigerator removes heat is
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That is, this refrigerator can remove 1.125 kJ of heat per second. Thus the time required to remove 2520 kJ of heat is
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This answer is optimistic since the refrigerated space will gain some heat during this process from the surrounding air, which will increase the work load.  Thus, in reality, it will take longer to cool the watermelons.

7-48 CD EES An air conditioner with a known COP cools a house to desired temperature in 15 min. The power consumption of the air conditioner is to be determined.

Assumptions 1 The air conditioner operates steadily.  2 The house is well-sealed so that no air leaks in or out during cooling. 3 Air is an ideal gas with constant specific heats at room temperature.

Properties  The constant volume specific heat of air is given to be cv = 0.72 kJ/kg.(C.  
Analysis Since the house is well-sealed (constant volume), the total amount of heat that needs to be removed from the house is
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This heat is removed in 15 minutes. Thus the average rate of heat removal from the house is
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Using the definition of the coefficient of performance, the power input to the air-conditioner is determined to be
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7-49 EES Problem 7-48 is reconsidered. The rate of power drawn by the air conditioner required to cool the house as a function for air conditioner EER ratings in the range 9 to 16 is to be investigated.  Representative costs of air conditioning units in the EER rating range are to be included.

Analysis The problem is solved using EES, and the results are tabulated and plotted below.  
"Input Data"
T_1=32 [C]

T_2=20 [C]

C_v = 0.72 [kJ/kg-C]

m_house=800 [kg]

DELTAtime=20 [min]

COP=EER/3.412

"Assuming no work done on the house and no heat energy added to the house 

in the time period with no change in KE and PE, the first law applied to the house is:"
E_dot_in - E_dot_out = DELTAE_dot 

E_dot_in = 0

E_dot_out = Q_dot_L 

DELTAE_dot = m_house*DELTAu_house/DELTAtime 

DELTAu_house = C_v*(T_2-T_1) 

"Using the definition of the coefficient of performance of the A/C:"
W_dot_in = Q_dot_L/COP "kJ/min"*convert('kJ/min','kW')  "kW"
Q_dot_H= W_dot_in*convert('KW','kJ/min')  + Q_dot_L  "kJ/min"
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	EER [Btu/kWh]
	Win
[kW]

	9
	2.184

	10
	1.965

	11
	1.787

	12
	1.638

	13
	1.512

	14
	1.404

	15
	1.31

	16
	1.228


7-50 A house is heated by resistance heaters, and the amount of electricity consumed during a winter month is given. The amount of money that would be saved if this house were heated by a heat pump with a known COP is to be determined.  

Assumptions  The heat pump operates steadily.  

Analysis The amount of heat the resistance heaters supply to the house is equal to he amount of electricity they consume. Therefore, to achieve the same heating effect, the house must be supplied with 1200 kWh of energy. A heat pump that supplied this much heat will consume electrical power in the amount of 
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which represent a savings of 1200 – 500 = 700 kWh. Thus the homeowner would have saved  

 (700 kWh)(0.085 $/kWh) = $59.50

7-51E The COP and the heating effect of a heat pump are given. The power input to the heat pump is to be determined.
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Assumptions  The heat pump operates steadily.  

Analysis Applying the definition of the coefficient of performance,
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7-52 The cooling effect and the rate of heat rejection of a refrigerator are given. The COP of the refrigerator is to be determined.

Assumptions  The refrigerator operates steadily.  

Analysis Applying the first law to the refrigerator gives
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Applying the definition of the coefficient of performance,
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7-53 The cooling effect and the power consumption of an air conditioner are given. The rate of heat rejection from this air conditioner is to be determined.
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Assumptions  The air conditioner operates steadily.  

Analysis Applying the first law to the air conditioner gives
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7-54 The rate of heat loss, the rate of internal heat gain, and the COP of a heat pump are given. The power input to the heat pump is to be determined.
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Assumptions  The heat pump operates steadily.  

Analysis The heating load of this heat pump system is the difference between the heat lost to the outdoors and the heat generated in the house from the people, lights, and appliances,
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Using the definition of COP, the power input to the heat pump is determined to be
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7-55E An office that is being cooled adequately by a 12,000 Btu/h window air-conditioner is converted to a computer room. The number of additional air-conditioners that need to be installed is to be determined.

Assumptions 1 The computers are operated by 4 adult men. 2 The computers consume 40 percent of their rated power at any given time.

Properties The average rate of heat generation from a person seated in a room/office is 100 W (given).
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Analysis The amount of heat dissipated by the computers is equal to the amount of electrical energy they consume. Therefore,
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since 1 W = 3.412 Btu/h. Then noting that each available air conditioner provides 4,000 Btu/h cooling, the number of air-conditioners needed becomes
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7-56 A decision is to be made between a cheaper but inefficient air-conditioner and an expensive but efficient air-conditioner for a building. The better buy is to be determined.

Assumptions The two air conditioners are comparable in all aspects other than the initial cost and the efficiency.

Analysis  The unit that will cost less during its lifetime is a better buy. The total cost of a system during its lifetime (the initial, operation, maintenance, etc.) can be determined by performing a life cycle cost analysis. A simpler alternative is to determine the simple payback period. The energy and cost savings of the more efficient air conditioner in this case is
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The installation cost difference between the two air-conditioners is


Cost difference = Cost of B – cost of A = 7000 – 5500 = $1500

Therefore, the more efficient air-conditioner B will pay for the $1500 cost differential in this case in about 1 year. 

Discussion A cost conscious consumer will have no difficulty in deciding that the more expensive but more efficient air-conditioner B is clearly the better buy in this case since air conditioners last at least 15 years. But the decision would not be so easy if the unit cost of electricity at that location was much less than $0.10/kWh, or if the annual air-conditioning load of the house was much less than 120,000 kWh.
7-57 Refrigerant-134a flows through the condenser of a residential heat pump unit. For a given compressor power consumption the COP of the heat pump and the rate of heat absorbed from the outside air are to be determined.
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Assumptions 1 The heat pump operates steadily. 2 The kinetic and potential energy changes are zero.

Properties The enthalpies of R-134a at the condenser inlet and exit are
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Analysis (a) An energy balance on the condenser gives the heat rejected in the condenser
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The COP of the heat pump is
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(b) The rate of heat absorbed from the outside air
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7-58 A commercial refrigerator with R-134a as the working fluid is considered. The evaporator inlet and exit states are specified. The mass flow rate of the refrigerant and the rate of heat rejected are to be determined.
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Assumptions 1 The refrigerator operates steadily. 2 The kinetic and potential energy changes are zero.

Properties The properties of R-134a at the evaporator inlet and exit states are (Tables A-11 through A-13)


[image: image63.wmf]kJ/kg

 

84

.

238

C

20

kPa

 

120

kJ/kg

 

38

.

65

2

.

0

kPa

 

120

2

2

2

1

1

1

=

þ

ý

ü

°

-

=

=

=

þ

ý

ü

=

=

h

T

P

h

x

P

  

Analysis (a) The refrigeration load is 
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The mass flow rate of the refrigerant is determined from
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(b) The rate of heat rejected from the refrigerator is
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Perpetual-Motion Machines

7-59C  This device creates energy, and thus it is a PMM1.

7-60C  This device creates energy, and thus it is a PMM1.

Reversible and Irreversible Processes

7-61C This process is irreversible.  As the block slides down the plane, two things happen, (a) the potential energy of the block decreases, and (b) the block and plane warm up because of the friction between them.  The potential energy that has been released can be stored in some form in the surroundings (e.g.,  perhaps in a spring).  When we restore the system to its original condition, we must (a) restore the potential energy by lifting the block back to its original elevation, and (b) cool the block and plane back to their original temperatures.


The potential energy may be restored by returning the energy that was stored during the original process as the block decreased its elevation and released potential energy.  The portion of the surroundings in which this energy had been stored would then return to its original condition as the elevation of the block is restored to its original condition.


In order to cool the block and plane to their original temperatures, we have to remove heat from the block and plane.  When this heat is transferred to the surroundings, something in the surroundings has to change its state (e.g., perhaps we warm up some water in the surroundings).  This change in the surroundings is permanent and cannot be undone.  Hence, the original process is irreversible.

7-62C Adiabatic stirring processes are irreversible because the energy stored within the system can not be spontaneously released in a manor to cause the mass of the system to turn the paddle wheel in the opposite direction to do work on the surroundings.

7-63C The chemical reactions of combustion processes of a natural gas and air mixture will generate carbon dioxide, water, and other compounds and will release heat energy to a lower temperature surroundings.  It is unlikely that the surroundings will return this energy to the reacting system and the products of combustion react spontaneously to reproduce the natural gas and air mixture.

7-64C  No.  Because it involves heat transfer through a finite temperature difference.

7-65C  Because reversible processes can be approached in reality, and they form the limiting cases.  Work producing devices that operate on reversible processes deliver the most work, and work consuming devices that operate on reversible processes consume the least work.

7-66C  When the compression process is non-quasi equilibrium, the molecules before the piston face cannot escape fast enough, forming a high pressure region in front of the piston.  It takes more work to move the piston against this high pressure region.

7-67C  When an expansion process is non-quasiequilibrium, the molecules before the piston face cannot follow the piston fast enough, forming a low pressure region behind the piston.  The lower pressure that pushes the piston produces less work.

7-68C  The irreversibilities that occur within the system boundaries are internal irreversibilities; those which occur outside the system boundaries are external irreversibilities.

7-69C  A reversible expansion or compression process cannot involve unrestrained expansion or sudden compression, and thus it is quasi-equilibrium.  A quasi-equilibrium expansion or compression process, on the other hand, may involve external irreversibilities (such as heat transfer through a finite temperature difference), and thus is not necessarily reversible.

The Carnot Cycle and Carnot's Principle

7-70C  The four processes that make up the Carnot cycle are isothermal expansion, reversible adiabatic expansion, isothermal compression, and reversible adiabatic compression.

7-71C  They are (1) the thermal efficiency of an irreversible heat engine is lower than the efficiency of a reversible heat engine operating between the same two reservoirs, and (2) the thermal efficiency of all the reversible heat engines operating between the same two reservoirs are equal.

7-72C  False.  The second Carnot principle states that no heat engine cycle can have a higher thermal efficiency than the Carnot cycle operating between the same temperature limits.

7-73C  Yes.  The second Carnot principle states that all reversible heat engine cycles operating between the same temperature limits have the same thermal efficiency.

7-74C  (a) No,  (b) No.  They would violate the Carnot principle.

Carnot Heat Engines

7-75C  No.

7-76C  The one that has a source temperature of 600°C. This is true because the higher the temperature at which heat is supplied to the working fluid of a heat engine, the higher the thermal efficiency.

7-77 Two pairs of thermal energy reservoirs are to be compared from a work-production perspective.

Assumptions  The heat engine operates steadily.  
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Analysis For the maximum production of work, a heat engine operating between the energy reservoirs would have to be completely reversible.  Then, for the first pair of reservoirs 
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For the second pair of reservoirs,
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The second pair is then capable of producing more work for each unit of heat extracted from the hot reservoir.

7-78 The source and sink temperatures of a power plant are given. The maximum efficiency of the plant is to be determined.
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Assumptions  The plant operates steadily.  

Analysis The maximum efficiency this plant can have is the Carnot efficiency, which is determined from
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7-79 The source and sink temperatures of a power plant are given. The maximum efficiency of the plant is to be determined.

[image: image268.bmp]Assumptions  The plant operates steadily.  

Analysis The maximum efficiency this plant can have is the Carnot efficiency, which is determined from
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7-80 CD EES The source and sink temperatures of a heat engine and the rate of heat supply are given. The maximum possible power output of this engine is to be determined.

Assumptions  The heat engine operates steadily.  

[image: image269.bmp]Analysis The highest thermal efficiency a heat engine operating between two specified temperature limits can have is the Carnot efficiency, which is determined from
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Then the maximum power output of this heat engine is determined from the definition of thermal efficiency to be
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7-81 EES Problem 7-80 is reconsidered. The effects of the temperatures of the heat source and the heat sink on the power produced and the cycle thermal efficiency as the source temperature varies from 300°C to 1000°C and the sink temperature varies from 0°C to 50°C are to be studied. The power produced and the cycle efficiency against the source temperature for sink temperatures of 0°C, 25°C, and 50°C are to be plotted.

Analysis The problem is solved using EES, and the results are tabulated and plotted below.  
"Input Data from the Diagram Window"
{T_H = 550 [C]

T_L = 25 [C]}
{Q_dot_H = 1200 [kJ/min]}
"First Law applied to the heat engine"
Q_dot_H - Q_dot_L- W_dot_net = 0

W_dot_net_KW=W_dot_net*convert(kJ/min,kW)

"Cycle Thermal Efficiency - Temperatures must be absolute"
eta_th = 1 - (T_L + 273)/(T_H + 273)

"Definition of cycle efficiency"
eta_th=W_dot_net / Q_dot_H
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[image: image271.bmp]
7-82E The sink temperature of a Carnot heat engine, the rate of heat rejection, and the thermal efficiency are given. The power output of the engine and the source temperature are to be determined.

Assumptions  The Carnot heat engine operates steadily.  

Analysis (a) The rate of heat input to this heat engine is determined from the definition of thermal efficiency,
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[image: image272.bmp]Then the power output of this heat engine can be determined from
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(b)  For reversible cyclic devices we have
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Thus the temperature of the source TH must be
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7-83E The source and sink temperatures and the power output of a reversible heat engine are given. The rate of heat input to the engine is to be determined.
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Assumptions  The heat engine operates steadily.  

Analysis The thermal efficiency of this reversible heat engine is determined from
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A rearrangement of the definition of the thermal efficiency produces
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7-84E The claim of an inventor about the operation of a heat engine is to be evaluated.
Assumptions  The heat engine operates steadily.  

Analysis If this engine were completely reversible, the thermal efficiency would be
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When the first law is applied to the engine above,
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The actual thermal efficiency of the proposed heat engine is then
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Since the thermal efficiency of the proposed heat engine is greater than that of a completely reversible heat engine which uses the same isothermal energy reservoirs, the inventor's claim is invalid.

7-85 The claim that the efficiency of a completely reversible heat engine can be doubled by doubling the temperature of the energy source is to be evaluated.
Assumptions  The heat engine operates steadily.  

Analysis The upper limit for the thermal efficiency of any heat engine occurs when a completely reversible engine operates between the same energy reservoirs. The thermal efficiency of this completely reversible engine is given by

[image: image275.wmf]300

400

500

600

700

800

900

1000

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

T

H

 

 

[

C

]

h

t

h

 

 

T

L

 

=

 

5

0

 

C

= 25 C



=  0 C

Q

H

 

=

 

1

2

0

0

 

k

J

/

m

i

n

 



[image: image82.wmf]H
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If we were to double the absolute temperature of the high temperature energy reservoir, the new thermal efficiency would be 
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The thermal efficiency is then not doubled as the temperature of the high temperature reservoir is doubled.

7-86 An inventor claims to have developed a heat engine. The inventor reports temperature, heat transfer, and work output measurements. The claim is to be evaluated. 
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Analysis The highest thermal efficiency a heat engine operating between two specified temperature limits can have is the Carnot efficiency, which is determined from
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The actual thermal efficiency of the heat engine in question is
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which is greater than the maximum possible thermal efficiency.  Therefore, this heat engine is a PMM2 and the claim is false.

7-87E An inventor claims to have developed a heat engine. The inventor reports temperature, heat transfer, and work output measurements. The claim is to be evaluated. 

Analysis The highest thermal efficiency a heat engine operating between two specified temperature limits can have is the Carnot efficiency, which is determined from
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The actual thermal efficiency of the heat engine in question is
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which is greater than the maximum possible thermal efficiency.  Therefore, this heat engine is a PMM2 and the claim is false.

7-88 A geothermal power plant uses geothermal liquid water at 160ºC at a specified rate as the heat source. The actual and maximum possible thermal efficiencies and the rate of heat rejected from this power plant are to be determined.

Assumptions 1 The power plant operates steadily. 2 The kinetic and potential energy changes are zero. 3 Steam properties are used for geothermal water.

Properties Using saturated liquid properties, the source and the sink state enthalpies of geothermal water are (Table A-4) 
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Analysis (a) The rate of heat input to the plant may be taken as the enthalpy difference between the source and the sink for the power plant
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The actual thermal efficiency is


[image: image90.wmf]8.8%

0.0876

=

=

=

=

MW

 

083

.

251

MW

 

22

in

out

net,

th

Q

W

&

&

h


(b) The maximum thermal efficiency is the thermal efficiency of a reversible heat engine operating between the source and sink temperatures
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(c) Finally, the rate of heat rejection is
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Carnot Refrigerators and Heat Pumps

7-89C  By increasing TL or by decreasing TH.

7-90C  It is the COP that a Carnot refrigerator would have, 
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7-91C  No.  At best (when everything is reversible), the increase in the work produced will be equal to the work consumed by the refrigerator.  In reality, the work consumed by the refrigerator will always be greater than the additional work produced, resulting in a decrease in the thermal efficiency of the power plant.

7-92C  No.  At best (when everything is reversible), the increase in the work produced will be equal to the work consumed by the refrigerator.  In reality, the work consumed by the refrigerator will always be greater than the additional work produced, resulting in a decrease in the thermal efficiency of the power plant.

7-93C  Bad idea. At best (when everything is reversible), the increase in the work produced will be equal to the work consumed by the heat pump. In reality, the work consumed by the heat pump will always be greater than the additional work produced, resulting in a decrease in the thermal efficiency of the power plant.

7-94 The minimum work per unit of heat transfer from the low-temperature source for a heat pump is to be determined. 

Assumptions  The heat pump operates steadily.  

[image: image278.bmp]Analysis Application of the first law gives
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For the minimum work input, this heat pump would be completely reversible and the thermodynamic definition of temperature would reduce the preceding expression to
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7-95E The claim of a thermodynamicist regarding to the thermal efficiency of a heat engine is to be evaluated.
[image: image279.jpg]


Assumptions  The plant operates steadily.  

Analysis The maximum thermal efficiency would be achieved when this engine is completely reversible. When this is the case,
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Since the thermal efficiency of the actual engine is less than this, this engine is possible.

7-96 An expression for the COP of a completely reversible refrigerator in terms of the thermal-energy reservoir temperatures, TL and TH  is to be derived. 

Assumptions  The refrigerator operates steadily.  

Analysis Application of the first law to the completely reversible refrigerator yields
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This result may be used to reduce the coefficient of performance,
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Since this refrigerator is completely reversible, the thermodynamic definition of temperature tells us that,
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When this is substituted into the COP expression, the result is
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7-97 The rate of cooling provided by a reversible refrigerator with specified reservoir temperatures is to be determined. 
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Assumptions  The refrigerator operates steadily.  

Analysis The COP of this reversible refrigerator is
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Rearranging the definition of the refrigerator coefficient of performance gives
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7-98 The refrigerated space and the environment temperatures for a refrigerator and the rate of heat removal from the refrigerated space are given. The minimum power input required is to be determined.

Assumptions  The refrigerator operates steadily.  

Analysis The power input to a refrigerator will be a minimum when the refrigerator operates in a reversible manner. The coefficient of performance of a reversible refrigerator depends on the temperature limits in the cycle only, and is determined from
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The power input to this refrigerator is determined from the definition of the coefficient of performance of a refrigerator,
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7-99 The refrigerated space temperature, the COP, and the power input of a Carnot refrigerator are given. The rate of heat removal from the refrigerated space and its temperature are to be determined.  

Assumptions  The refrigerator operates steadily.  

Analysis (a) The rate of heat removal from the refrigerated space is determined from the definition of the COP of a refrigerator,
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(b) The temperature of the refrigerated space TL is determined from the coefficient of performance relation for a Carnot refrigerator,
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It yields


TL  =  243.8 K  =  -29.2°C

7-100 An inventor claims to have developed a refrigerator. The inventor reports temperature and COP measurements. The claim is to be evaluated. 

Analysis The highest coefficient of performance a refrigerator can have when removing heat from a cool medium at -12°C to a warmer medium at 25°C is
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The COP claimed by the inventor is 6.5, which is below this maximum value, thus the claim is reasonable. However, it is not probable.

7-101E An air-conditioning system maintains a house at a specified temperature. The rate of heat gain of the house and the rate of internal heat generation are given. The maximum power input required is to be determined.

Assumptions  The air-conditioner operates steadily.  

Analysis The power input to an air-conditioning system will be a minimum when the air-conditioner operates in a reversible manner.  The coefficient of performance of a reversible air-conditioner (or refrigerator) depends on the temperature limits in the cycle only, and is determined from
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The cooling load of this air-conditioning system is the sum of the heat gain from the outside and the heat generated within the house,
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The power input to this refrigerator is determined from the definition of the coefficient of performance of a refrigerator,
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7-102 A heat pump maintains a house at a specified temperature. The rate of heat loss of the house is given. The minimum power input required is to be determined.

Assumptions  The heat pump operates steadily.  

Analysis The power input to a heat pump will be a minimum when the heat pump operates in a reversible manner. The COP of a reversible heat pump depends on the temperature limits in the cycle only, and is determined from
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The required power input to this reversible heat pump is determined from the definition of the coefficient of performance to be
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which is the minimum power input required.

7-103 A heat pump maintains a house at a specified temperature. The rate of heat loss of the house and the power consumption of the heat pump are given. It is to be determined if this heat pump can do the job.

Assumptions  The heat pump operates steadily.  

Analysis The power input to a heat pump will be a minimum when the heat pump operates in a reversible manner. The coefficient of performance of a reversible heat pump depends on the temperature limits in the cycle only, and is determined from


[image: image113.wmf](

)

(

)

(

)

14.75

K

 

273

22

/

K

 

273

2

1

1

/

1

1

COP

rev

HP,

=

+

+

-

=

-

=

H

L

T

T


The required power input to this reversible heat pump is determined from the definition of the coefficient of performance to be
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This heat pump is powerful enough since 5 kW > 2.07 kW.

7-104E The power required by a reversible refrigerator with specified reservoir temperatures is to be determined. 

Assumptions  The refrigerator operates steadily.  

Analysis The COP of this reversible refrigerator is
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Using this result in the coefficient of performance expression yields
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7-105 The COP of a completely reversible refrigerator as a function of the temperature of the sink is to be calculated and plotted. 

Assumptions  The refrigerator operates steadily.  

Analysis The coefficient of performance for this completely reversible refrigerator is given by
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Using EES, we tabulate and plot the variation of COP with the sink temperature as follows:

	TH [K]
	COPR,max

	300
	5

	320
	3.571

	340
	2.778

	360
	2.273

	380
	1.923

	400
	1.667

	420
	1.471

	440
	1.316

	460
	1.19

	480
	1.087

	500
	1


7-106 A reversible heat pump is considered. The temperature of the source and the rate of heat transfer to the sink are to be determined.

Assumptions  The heat pump operates steadily.  

Analysis Combining the first law, the expression for the coefficient of performance, and the thermodynamic temperature scale gives
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which upon rearrangement becomes
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Based upon the definition of the heat pump coefficient of performance,
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7-107 A heat pump that consumes 5-kW of power when operating maintains a house at a specified temperature. The house is losing heat in proportion to the temperature difference between the indoors and the outdoors. The lowest outdoor temperature for which this heat pump can do the job is to be determined.

Assumptions  The heat pump operates steadily.  

Analysis Denoting the outdoor temperature by TL, the heating load of this house can be expressed as
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The coefficient of performance of a Carnot heat pump depends on the temperature limits in the cycle only, and can be expressed as
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or, as
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Equating the two relations above and solving for TL, we obtain


TL  =  259.7 K  =  -13.3°C
7-108 A heat pump maintains a house at a specified temperature in winter. The maximum COPs of the heat pump for different outdoor temperatures are to be determined.  

Analysis The coefficient of performance of a heat pump will be a maximum when the heat pump operates in a reversible manner.  The coefficient of performance of a reversible heat pump depends on the temperature limits in the cycle only, and is determined for all three cases above to be
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7-109E A heat pump maintains a house at a specified temperature. The rate of heat loss of the house is given. The minimum power inputs required for different source temperatures are to be determined.

Assumptions  The heat pump operates steadily.  

Analysis (a) The power input to a heat pump will be a minimum when the heat pump operates in a reversible manner.  If the outdoor air at 25°F is used as the heat source, the COP of the heat pump and the required power input are determined to be
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(b) If the well-water at 50°F is used as the heat source, the COP of the heat pump and the required power input are determined to be
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7-110 A Carnot heat pump consumes 8-kW of power when operating, and maintains a house at a specified temperature. The average rate of heat loss of the house in a particular day is given. The actual running time of the heat pump that day, the heating cost, and the cost if resistance heating is used instead are to be determined.

Analysis (a)  The coefficient of performance of this Carnot heat pump depends on the temperature limits in the cycle only, and is determined from
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The amount of heat the house lost that day is
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Then the required work input to this Carnot heat pump is determined from the definition of the coefficient of performance to be
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Thus the length of time the heat pump ran that day is
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(b)  The total heating cost that day is
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(c)  If resistance heating were used, the entire heating load for that day would have to be met by electrical energy. Therefore, the heating system would consume 1,968,000 kJ of electricity that would cost
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7-111 A Carnot heat engine is used to drive a Carnot refrigerator. The maximum rate of heat removal from the refrigerated space and the total rate of heat rejection to the ambient air are to be determined.

Assumptions  The heat engine and the refrigerator operate steadily.  

Analysis (a) The highest thermal efficiency a heat engine operating between two specified temperature limits can have is the Carnot efficiency, which is determined from
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Then the maximum power output of this heat engine is determined from the definition of thermal efficiency to be
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which is also the power input to the refrigerator, 
[image: image139.wmf]in

net,
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The rate of heat removal from the refrigerated space will be a maximum if a Carnot refrigerator is used.  The COP of the Carnot refrigerator is
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Then the rate of heat removal from the refrigerated space becomes
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(b)  The total rate of heat rejection to the ambient air is the sum of the heat rejected by the heat engine (
[image: image142.wmf]HE

,

L

Q

&

) and the heat discarded by the refrigerator (
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7-112E A Carnot heat engine is used to drive a Carnot refrigerator. The maximum rate of heat removal from the refrigerated space and the total rate of heat rejection to the ambient air are to be determined.

Assumptions  The heat engine and the refrigerator operate steadily. 
Analysis (a) The highest thermal efficiency a heat engine operating between two specified temperature limits can have is the Carnot efficiency, which is determined from
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Then the maximum power output of this heat engine is determined from the definition of thermal efficiency to be
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which is also the power input to the refrigerator, 
[image: image148.wmf]in

net,
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The rate of heat removal from the refrigerated space will be a maximum if a Carnot refrigerator is used.  The COP of the Carnot refrigerator is
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Then the rate of heat removal from the refrigerated space becomes
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(b) The total rate of heat rejection to the ambient air is the sum of the heat rejected by the heat engine (
[image: image151.wmf]HE
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) and the heat discarded by the refrigerator (
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7-113 An air-conditioner with R-134a as the working fluid is considered. The compressor inlet and exit states are specified. The actual and maximum COPs and the minimum volume flow rate of the refrigerant at the compressor inlet are to be determined.

Assumptions 1 The air-conditioner operates steadily. 2 The kinetic and potential energy changes are zero.

Properties The properties of R-134a at the compressor inlet and exit states are (Tables A-11 through A-13)
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Analysis (a) The mass flow rate of the refrigerant and the power consumption of the compressor are
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The heat gains to the room must be rejected by the air-conditioner. That is,
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Then, the actual COP becomes
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(b) The COP of a reversible refrigerator operating between the same temperature limits is 
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(c) The minimum power input to the compressor for the same refrigeration load would be
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The minimum mass flow rate is
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Finally, the minimum volume flow rate at the compressor inlet is
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Review Problems

7-114 A Carnot heat engine cycle is executed in a steady-flow system with steam. The thermal efficiency and the mass flow rate of steam are given. The net power output of the engine is to be determined.

Assumptions  All components operate steadily.
Properties The enthalpy of vaporization hfg of water at 275(C is 1574.5 kJ/kg (Table A-4).

Analysis The enthalpy of vaporization hfg at a given T or P represents the amount of heat transfer as 1 kg of a substance is converted from saturated liquid to saturated vapor at that T or P.  Therefore, the rate of heat transfer to the steam during heat addition process is
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Then the power output of this heat engine becomes
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7-115 A heat pump with a specified COP is to heat a house. The rate of heat loss of the house and the power consumption of the heat pump are given. The time it will take for the interior temperature to rise from 3(C to 22(C is to be determined.

Assumptions 1 Air is an ideal gas with constant specific heats at room temperature. 2 The house is well-sealed so that no air leaks in or out. 3 The COP of the heat pump remains constant during operation.
Properties The constant volume specific heat of air at room temperature is cv = 0.718 kJ/kg.(C (Table A-2)

Analysis The house is losing heat at a rate of
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The rate at which this heat pump supplies heat is
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That is, this heat pump can supply heat at a rate of 19.2 kJ/s.  Taking the house as the system (a closed system), the energy balance can be written as
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Substituting,   
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Solving for (t, it will take


(t  =  3373 s  =  0.937 h
for the temperature in the house to rise to 22(C.

7-116 The claim of a manufacturer of ice cream freezers regarding the COP of these freezers is to be evaluated. 

Assumptions  The refrigerator operates steadily.  

Analysis The maximum refrigerator coefficient of performance would occur if the refrigerator were completely reversible,
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Since the claimed COP is less than this maximum, this refrigerator is possible.

7-117 The claim of a heat pump designer regarding the COP of the heat pump is to be evaluated. 

Assumptions  The heat pump operates steadily.  

Analysis The maximum heat pump coefficient of performance would occur if the heat pump were completely reversible,
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Since the claimed COP is less than this maximum, this heat pump is possible.

7-118E The operating conditions of a heat pump are given.  The minimum temperature of the source that satisfies the second law of thermodynamics is to be determined. 

Assumptions  The heat pump operates steadily.  

Analysis Applying the first law to this heat pump gives
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In the reversible case we have
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Then the minimum temperature may be determined to be
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7-119 The claim of a thermodynamicist  regarding the COP of a heat pump is to be evaluated. 

Assumptions  The heat pump operates steadily.  

Analysis The maximum heat pump coefficient of performance would occur if the heat pump were completely reversible,
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Since the claimed COP is less than this maximum, the claim is valid.

7-120 A Carnot heat engine cycle is executed in a closed system with a fixed mass of R-134a. The thermal efficiency of the cycle is given. The net work output of the engine is to be determined.

Assumptions  All components operate steadily.
Properties The enthalpy of vaporization of R-134a at 50(C is hfg  = 151.79 kJ/kg  (Table A-11).

Analysis The enthalpy of vaporization hfg at a given T or P represents the amount of heat transfer as 1 kg of a substance is converted from saturated liquid to saturated vapor at that T or P.  Therefore, the amount of heat transfer to R-134a during the heat addition process of the cycle is
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Then the work output of this heat engine becomes
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7-121 A heat pump with a specified COP and power consumption is used to heat a house. The time it takes for this heat pump to raise the temperature of a cold house to the desired level is to be determined.

Assumptions 1 Air is an ideal gas with constant specific heats at room temperature. 2 The heat loss of the house during the warp-up period is negligible. 3 The house is well-sealed so that no air leaks in or out.
Properties The constant volume specific heat of air at room temperature is cv = 0.718 kJ/kg.(C.
Analysis Since the house is well-sealed (constant volume), the total amount of heat that needs to be supplied to the house is
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The rate at which this heat pump supplies heat is
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That is, this heat pump can supply 14 kJ of heat per second.  Thus the time required to supply 16,155 kJ of heat is
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7-122 A solar pond power plant operates by absorbing heat from the hot region near the bottom, and rejecting waste heat to the cold region near the top. The maximum thermal efficiency that the power plant can have is to be determined.

Analysis The highest thermal efficiency a heat engine operating between two specified temperature limits can have is the Carnot efficiency, which is determined from
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In reality, the temperature of the working fluid must be above 35(C in the condenser, and below 80(C in the boiler to allow for any effective heat transfer.  Therefore, the maximum efficiency of the actual heat engine will be lower than the value calculated above.

7-123 A Carnot heat engine cycle is executed in a closed system with a fixed mass of steam. The net work output of the cycle and the ratio of sink and source temperatures are given. The low temperature in the cycle is to be determined.

Assumptions  The engine is said to operate on the Carnot cycle, which is totally reversible.
Analysis The thermal efficiency of the cycle is

Also,
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since the enthalpy of vaporization hfg at a given T or P represents the amount of heat transfer as 1 kg of a substance is converted from saturated liquid to saturated vapor at that T or P.  Therefore, TL is the temperature that corresponds to the hfg value of 2427.2 kJ/kg, and is determined from the steam tables to be


TL  =  31.3(C

7-124 EES Problem 7-123 is reconsidered. The effect of the net work output on the required temperature of the steam during the heat rejection process as the work output varies from 15 kJ to 25 kJ is to be investigated.

Analysis The problem is solved using EES, and the results are tabulated and plotted below.  
m_Steam = 0.0103 [kg]

THtoTLRatio = 2 "T_H = 2*T_L"
{W_out =15 [kJ]} "Depending on the value of W_out, adjust the guess value of T_L."
eta= 1-1/ THtoTLRatio  "eta = 1 - T_L/T_H"
Q_H= W_out/eta 

"First law applied to the steam engine cycle yields:"
Q_H - Q_L= W_out 

"Steady-flow analysis of the condenser yields

m_Steam*h_4 = m_Steam*h_1 +Q_L

Q_L = m_Steam*(h_4 - h_1)  and h_fg = h_4 - h_1  also  T_L=T_1=T_4"
Q_L=m_Steam*h_fg

h_fg=enthalpy(Steam_iapws,T=T_L,x=1) - enthalpy(Steam_iapws,T=T_L,x=0)

T_H=THtoTLRatio*T_L

"The heat rejection temperature, in C is:"
T_L_C = T_L - 273
	TL,C [C]
	Wout [kJ]

	293.1
	15

	253.3
	17.5

	199.6
	20

	126.4
	22.5

	31.3
	25



7-125 A Carnot refrigeration cycle is executed in a closed system with a fixed mass of R-134a. The net work input and the ratio of maximum-to-minimum temperatures are given. The minimum pressure in the cycle is to be determined. 

Assumptions  The refrigerator is said to operate on the reversed Carnot cycle, which is totally reversible.
Analysis The coefficient of performance of the cycle is
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Also,
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since the enthalpy of vaporization hfg at a given T or P represents the amount of heat transfer per unit mass as a substance is converted from saturated liquid to saturated vapor at that T or P.  Therefore, TH is the temperature that corresponds to the hfg value of 137.5 kJ/kg, and is determined from the R-134a tables to be

Then,
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Therefore,
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7-126 EES Problem 7-125 is reconsidered. The effect of the net work input on the minimum pressure as the work input varies from 10 kJ to 30 kJ is to be investigated. The minimum pressure in the refrigeration cycle is to be plotted as a function of net work input.

Analysis The problem is solved using EES, and the results are tabulated and plotted below.  
Analysis: The coefficient of performance of the cycle is given by"
m_R134a = 0.96 [kg]

THtoTLRatio = 1.2  "T_H = 1.2T_L"
"W_in = 22 [kJ]"  "Depending on the value of W_in, adjust the guess value of T_H."
COP_R = 1/( THtoTLRatio- 1)

Q_L = W_in*COP_R 

"First law applied to the refrigeration cycle yields:"
Q_L + W_in = Q_H

"Steady-flow analysis of the condenser yields

m_R134a*h_3 = m_R134a*h_4 +Q_H

Q_H = m_R134a*(h_3-h_4)  and h_fg = h_3 - h_4  also  T_H=T_3=T_4"
Q_H=m_R134a*h_fg

h_fg=enthalpy(R134a,T=T_H,x=1) - enthalpy(R134a,T=T_H,x=0)

T_H=THtoTLRatio*T_L

"The minimum pressure is the saturation pressure corresponding to T_L."
P_min = pressure(R134a,T=T_L,x=0)*convert(kPa,MPa) 

T_L_C = T_L – 273

	Pmin [MPa]
	TH [K]
	TL [K]
	Win [kJ]
	TL,C [C]

	0.8673
	368.8
	307.3
	10
	34.32

	0.6837
	358.9
	299
	15
	26.05

	0.45
	342.7
	285.6
	20
	12.61

	0.2251
	319.3
	266.1
	25
	-6.907

	0.06978
	287.1
	239.2
	30
	-33.78



7-127 Two Carnot heat engines operate in series between specified temperature limits. If the thermal efficiencies of both engines are the same, the temperature of the intermediate medium between the two engines is to be determined.

Assumptions  The engines are said to operate on the Carnot cycle, which is totally reversible.
Analysis  The thermal efficiency of the two Carnot heat engines can be expressed as
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Equating,
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Solving for T,
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7-128 It is to be proven that a refrigerator's COP cannot exceed that of a completely reversible refrigerator that shares the same thermal-energy reservoirs. 

Assumptions  The refrigerator operates steadily.  

Analysis We begin by assuming that the COP of the general refrigerator B is greater than that of the completely reversible refrigerator A, COPB  > COPA.  When this is the case, a rearrangement of the coefficient of performance expression yields
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That is, the magnitude of the work required to drive refrigerator B is less than that needed to drive completely reversible refrigerator A. Applying the first law to both refrigerators yields
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since the work supplied to refrigerator B is less than that supplied to refrigerator A, and both have the same cooling effect, QL.


Since A is a completely reversible refrigerator, we can reverse it without changing the magnitude of the heat and work transfers.  This is illustrated in the figure below.  The heat, QL , which is rejected by the reversed refrigerator A can now be routed directly to refrigerator B.  The net effect when this is done is that no heat is exchanged with the TL  reservoir.  The magnitude of the heat supplied to the reversed refrigerator A, QH,A has been shown to be larger than that rejected by refrigerator B.  There is then a net heat transfer from the TH  reservoir to the combined device in the dashed lines of the figure whose magnitude is given by QH,A – QH,B.  Similarly, there is a net work production by the combined device whose magnitude is given by  WA – WB.  
The combined cyclic device then exchanges heat with a reservoir at a single temperature and produces work which is clearly a violation of the Kelvin-Planck statement of the second law. Our assumption the COPB  > COPA  must then be wrong.

7-129E The thermal efficiency of a completely reversible heat engine as a function of the source temperature is to be calculated and plotted. 
Assumptions  The heat engine operates steadily.  

Analysis  With the specified sink temperature, the thermal efficiency of this completely reversible heat engine is 
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Using EES, we tabulate and plot the variation of thermal efficiency with the source temperature:


	TH [R]
	(th,rev

	500
	0

	650
	0.2308

	800
	0.375

	950
	0.4737

	1100
	0.5455

	1250
	0.6

	1400
	0.6429

	1550
	0.6774

	1700
	0.7059

	1850
	0.7297

	2000
	0.75


7-130 It is to be proven that the COP of all completely reversible refrigerators must be the same when the reservoir temperatures are the same. 

Assumptions  The refrigerators operate steadily.  

Analysis We begin by assuming that COPA  < COPB.  When this is the case, a rearrangement of the coefficient of performance expression yields
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That is, the magnitude of the work required to drive refrigerator A is greater than that needed to drive refrigerator B. Applying the first law to both refrigerators yields



[image: image196.wmf]B

H

A

H

Q

Q

,

,

>


since the work supplied to refrigerator A is greater than that supplied to refrigerator B, and both have the same cooling effect, QL.


Since A is a completely reversible refrigerator, we can reverse it without changing the magnitude of the heat and work transfers.  This is illustrated in the figure below.  The heat, QL , which is rejected by the reversed refrigerator A can now be routed directly to refrigerator B.  The net effect when this is done is that no heat is exchanged with the TL  reservoir.  The magnitude of the heat supplied to the reversed refrigerator A, QH,A has been shown to be larger than that rejected by refrigerator B.  There is then a net heat transfer from the TH  reservoir to the combined device in the dashed lines of the figure whose magnitude is given by QH,A – QH,B.  Similarly, there is a net work production by the combined device whose magnitude is given by  WA – WB.  
The combined cyclic device then exchanges heat with a reservoir at a single temperature and produces work which is clearly a violation of the Kelvin-Planck statement of the second law. Our assumption the COPA  < COPB  must then be wrong.


If we interchange A and B in the previous argument, we would conclude that the COPB  cannot be less than COPA. The only alternative left is that


COPA = COPB
7-131 An expression for the COP of a completely reversible heat pump in terms of the thermal-energy reservoir temperatures, TL and TH  is to be derived. 

Assumptions  The heat pump operates steadily.  

Analysis Application of the first law to the completely reversible heat pump yields
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This result may be used to reduce the coefficient of performance,
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Since this heat pump is completely reversible, the thermodynamic definition of temperature tells us that,
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When this is substituted into the COP expression, the result is



[image: image200.wmf]L

H

H

H

L

T

T

T

T

T

-

=

-

=

/

1

1

COP

rev

HP,


7-132 A Carnot heat engine drives a Carnot refrigerator that removes heat from a cold medium at a specified rate. The rate of heat supply to the heat engine and the total rate of heat rejection to the environment are to be determined.

Analysis (a)  The coefficient of performance of the Carnot refrigerator is
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Then power input to the refrigerator becomes
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which is equal to the power output of the heat engine, 
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The thermal efficiency of the Carnot heat engine is determined from
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Then the rate of heat input to this heat engine is determined from the definition of thermal efficiency to be
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(b) The total rate of heat rejection to the ambient air is the sum of the heat rejected by the heat engine (
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and
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7-133 EES Problem 7-132 is reconsidered. The effects of the heat engine source temperature, the environment temperature, and the cooled space temperature on the required heat supply to the heat engine and the total rate of heat rejection to the environment as the source temperature varies from 500 K to 1000 K, the environment temperature varies from 275 K to 325 K, and the cooled space temperature varies from  -20°C to 0°C are to be investigated. The required heat supply is to be plotted against the source temperature for the cooled space temperature of -15°C and environment temperatures of 275, 300, and 325 K.

Analysis The problem is solved using EES, and the results are tabulated and plotted below.  
Q_dot_L_R = 400 [kJ/min]

T_surr = 300 [K]

T_H = 750 [K]

T_L_C = -15 [C]

T_L =T_L_C+ 273 "[K]"
"Coefficient of performance of the Carnot refrigerator:"
T_H_R = T_surr

COP_R = 1/(T_H_R/T_L-1)

"Power input to the refrigerator:"
W_dot_in_R = Q_dot_L_R/COP_R

"Power output from heat engine must be:"
W_dot_out_HE =  W_dot_in_R

"The efficiency of the heat engine is:"
T_L_HE = T_surr

eta_HE = 1 - T_L_HE/T_H

"The rate of heat input to the heat engine is:"
Q_dot_H_HE = W_dot_out_HE/eta_HE

"First law applied to the heat engine and refrigerator:"
Q_dot_L_HE = Q_dot_H_HE - W_dot_out_HE

Q_dot_H_R = Q_dot_L_R + W_dot_in_R

"Total heat transfer rate to the surroundings:"
Q_dot_surr = Q_dot_L_HE + Q_dot_H_R "[kJ/min]"


	QHHE [kJ/min]
	TH
[K]

	162.8
	500

	130.2
	600

	114
	700

	104.2
	800

	97.67
	900

	93.02
	1000


7-134 Half of the work output of a Carnot heat engine is used to drive a Carnot heat pump that is heating a house.  The minimum rate of heat supply to the heat engine is to be determined.

Assumptions Steady operating conditions exist.
Analysis  The coefficient of performance of the Carnot heat pump is
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Then power input to the heat pump, which is supplying heat to the house at the same rate as the rate of heat loss, becomes
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which is half the power produced by the heat engine.  Thus the power output of the heat engine is
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To minimize the rate of heat supply, we must use a Carnot heat engine whose thermal efficiency is determined from
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Then the rate of heat supply to this heat engine is determined from the definition of thermal efficiency to be
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7-135 A Carnot refrigeration cycle is executed in a closed system with a fixed mass of R-134a. The net work input and the maximum and minimum temperatures are given. The mass fraction of the refrigerant that vaporizes during the heat addition process, and the pressure at the end of the heat rejection process are to be determined.

Properties The enthalpy of vaporization of R-134a at -8(C is hfg  = 204.52 kJ/kg  (Table A-12).

Analysis The coefficient of performance of the cycle is

and
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Then the amount of refrigerant that vaporizes during heat absorption is
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since the enthalpy of vaporization hfg at a given T or P represents the amount of heat transfer per unit mass as a substance is converted from saturated liquid to saturated vapor at that T or P.  Therefore, the fraction of mass that vaporized during heat addition process is
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The pressure at the end of the heat rejection process is
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7-136 A Carnot heat pump cycle is executed in a steady-flow system with R-134a flowing at a specified rate. The net power input and the ratio of the maximum-to-minimum temperatures are given. The ratio of the maximum to minimum pressures is to be determined.

Analysis The coefficient of performance of the cycle is
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and
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since the enthalpy of vaporization hfg at a given T or P represents the amount of heat transfer per unit mass as a substance is converted from saturated liquid to saturated vapor at that T or P.  Therefore, TH is the temperature that corresponds to the hfg value of 132.58 kJ/kg, and is determined from the R-134a tables to be

and
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Also,
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Then the ratio of the maximum to minimum pressures in the cycle is
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7-137 A Carnot heat engine is operating between specified temperature limits. The source temperature that will double the efficiency is to be determined.

Analysis  Denoting the new source temperature by TH*, the thermal efficiency of the Carnot heat engine for both cases can be expressed as
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Substituting,
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Solving for TH*,
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which is the desired relation.

7-138E  A washing machine uses $33/year worth of hot water heated by a gas water heater. The amount of hot water an average family uses per week is to be determined.  

Assumptions  1 The electricity consumed by the motor of the washer is negligible. 2 Water is an incompressible substance with constant properties at room temperature. 

Properties  The density and specific heat of water at room temperature are ( = 62.1 lbm/ft3 and c = 1.00 Btu/lbm.(F (Table A-3E). 

Analysis The amount of electricity used to heat the water and the net amount transferred to water are 
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Then the mass and the volume of hot water used per week become
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and
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Therefore, an average family uses about 52 gallons of hot water per week for washing clothes.

7-139 CD EES A typical heat pump powered water heater costs about $800 more to install than a typical electric water heater. The number of years it will take for the heat pump water heater to pay for its cost differential from the energy it saves is to be determined.

Assumptions 1 The price of electricity remains constant. 2 Water is an incompressible substance with constant properties at room temperature. 3 Time value of money (interest, inflation) is not considered.

Analysis The amount of electricity used to heat the water and the net amount transferred to water are 
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The amount of electricity consumed by the heat pump and its cost are
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Then the money saved per year by the heat pump and the simple payback period become
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Discussion The economics of heat pump water heater will be even better if the air in the house is used as the heat source for the heat pump in summer, and thus also serving as an air-conditioner.

7-140 EES Problem 7-139 is reconsidered. The effect of the heat pump COP on the yearly operation costs and the number of years required to break even are to be considered.

Analysis The problem is solved using EES, and the results are tabulated and plotted below.  
"Energy supplied by the water heater to the water per year is E_ElecHeater"
"Cost per year to operate electric water heater for one year is:"
Cost_ElectHeater = 390 [$/year]

"Energy supplied to the water by electric heater is 90% of energy purchased"
E_ElectHeater = 0.9*Cost_ElectHeater /UnitCost  "[kWh/year]"
UnitCost=0.08 [$/kWh]

"For the same amont of heated water and assuming that all the heat energy leaving 

the heat pump goes into the water, then"
"Energy supplied by heat pump heater = Energy supplied by electric heater"
E_HeatPump = E_ElectHeater "[kWh/year]"
"Electrical Work enegy supplied to heat pump = Heat added to water/COP"
COP=2.2

W_HeatPump = E_HeatPump/COP "[kWh/year]"
"Cost per year to operate the heat pump is"
Cost_HeatPump=W_HeatPump*UnitCost

"Let N_BrkEven be the number of years to break even:"
"At the break even point, the total cost difference between the two water heaters is zero."
"Years to break even, neglecting the cost to borrow the extra $800 to install heat pump"
CostDiff_total = 0 [$]

CostDiff_total=AddCost+N_BrkEven*(Cost_HeatPump-Cost_ElectHeater)

AddCost=800 [$]

"The plot windows show the effect of heat pump COP on the yearly operation costs and the 

number of years required to break even.  The data for these plots were obtained by placing 

'{' and '}' around the COP = 2.2 line, setting the COP values in the Parametric Table, and 

pressing F3 or selecting Solve Table from the Calculate menu"  

	COP
	BBrkEven [years]
	CostHeatPump [$/year]
	CostElektHeater [$/year]

	2
	3.73
	175.5
	390

	2.3
	3.37
	152.6
	390

	2.6
	3.137
	135
	390

	2.9
	2.974
	121
	390

	3.2
	2.854
	109.7
	390

	3.5
	2.761
	100.3
	390

	3.8
	2.688
	92.37
	390

	4.1
	2.628
	85.61
	390

	4.4
	2.579
	79.77
	390

	4.7
	2.537
	74.68
	390

	5
	2.502
	70.2
	390
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7-141 A home owner is to choose between a high-efficiency natural gas furnace and a ground-source heat pump. The system with the lower energy cost is to be determined.

Assumptions The two heater are comparable in all aspects other than the cost of energy.

Analysis  The unit cost of each kJ of useful energy supplied to the house by each system is 

Natural gas furnace:
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Heat Pump System:
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The energy cost of ground-source heat pump system will be lower.  

7-142 ··· 7-147 Design and Essay Problems
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