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Entropy and the Increase of Entropy Principle

8-1C  No.  The 
[image: image739.emf] represents the net heat transfer during a cycle, which could be positive.

8-2C No.  A system may produce more (or less) work than it receives during a cycle.  A steam power plant, for example, produces more work than it receives during a cycle, the difference being the net work output.

8-3C  The entropy change will be the same for both cases since entropy is a property and it has a fixed value at a fixed state.

8-4C No.  In general, that integral will have a different value for different processes.  However, it will have the same value for all reversible processes.

8-5C  Yes.

8-6C  That integral should be performed along a reversible path to determine the entropy change.

8-7C No.  An isothermal process can be irreversible. Example: A system that involves paddle-wheel work while losing an equivalent amount of heat.

8-8C  The value of this integral is always larger for reversible processes.

8-9C  No.  Because the entropy of the surrounding air increases even more during that process, making the total entropy change positive.

8-10C  It is possible to create entropy, but it is not possible to destroy it.

8-11C If the system undergoes a reversible process, the entropy of the system cannot change without a heat transfer.  Otherwise, the entropy must increase since there are no offsetting entropy changes associated with reservoirs exchanging heat with the system.

8-12C The claim that work will not change the entropy of a fluid passing through an adiabatic steady-flow system with a single inlet and outlet is true only if the process is also reversible.  Since no real process is reversible, there will be an entropy increase in the fluid during the adiabatic process in devices such as pumps, compressors, and turbines.

8-13C Sometimes.

8-14C  Never.

8-15C  Always.

8-16C  Increase.

8-17C  Increases.

8-18C  Decreases.

8-19C  Sometimes.

8-20C  Yes.  This will happen when the system is losing heat, and the decrease in entropy as a result of this heat loss is equal to the increase in entropy as a result of irreversibilities.

8-21C  They are heat transfer, irreversibilities, and entropy transport with mass.

8-22C  Greater than.

8-23 A rigid tank contains an ideal gas that is being stirred by a paddle wheel. The temperature of the gas remains constant as a result of heat transfer out. The entropy change of the gas is to be determined.
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Assumptions  The gas in the tank is given to be an ideal gas.  

Analysis  The temperature and the specific volume of the gas remain constant during this process. Therefore, the initial and the final states of the gas are the same. Then s2 = s1 since entropy is a property.  Therefore,
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8-24 Air is compressed steadily by a compressor. The air temperature is maintained constant by heat rejection to the surroundings. The rate of entropy change of air is to be determined.  

Assumptions 1 This is a steady-flow process since there is no change with time. 2 Kinetic and potential energy changes are negligible.  3 Air is an ideal gas. 4 The process involves no internal irreversibilities such as friction, and thus it is an isothermal, internally reversible process.
Properties Noting that h =  h(T) for ideal gases, we have h1 = h2  since T1 = T2 = 25(C.  

Analysis  We take the compressor as the system. Noting that the enthalpy of air remains constant, the energy balance for this steady-flow system can be expressed in the rate form as
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Therefore,

             

[image: image4.wmf]kW

 

12

in

out

=

=

W

Q

&

&


Noting that the process is assumed to be an isothermal and internally reversible process, the rate of entropy change of air is determined to be
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8-25 Heat is transferred directly from an energy-source reservoir to an energy-sink. The entropy change of the two reservoirs is to be calculated and it is to be determined if the increase of entropy principle is satisfied.
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Assumptions  The reservoirs operate steadily.  

Analysis  The entropy change of the source and sink is given by
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Since the entropy of everything involved in this process has increased, this transfer of heat is possible.

8-26 It is assumed that heat is transferred from a cold reservoir to the hot reservoir contrary to the Clausius statement of the second law. It is to be proven that this violates the increase in entropy principle.

Assumptions  The reservoirs operate steadily.  
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Analysis  According to the definition of the entropy, the entropy change of the high-temperature reservoir shown below is
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and the entropy change of the low-temperature reservoir is
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The total entropy change of everything involved with this system is then
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which violates the increase in entropy principle since the entropy is decreasing, not increasing or staying fixed. 

8-27 Heat is transferred from a hot reservoir to a cold reservoir. The entropy change of the two reservoirs is to be calculated and it is to be determined if the second law is satisfied.
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Assumptions  The reservoirs operate steadily.  

Analysis  The rate of entropy change of everything involved in this transfer of heat is given by
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Since this rate is positive (i.e., the entropy increases as time passes), this transfer of heat is possible.

8-28E A reversible air conditioner with specified reservoir temperatures is considered. The entropy change of two reservoirs is to be calculated and it is to be determined if this air conditioner satisfies the increase in entropy principle.

Assumptions  The air conditioner operates steadily.  
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Analysis  According to the thermodynamic temperature scale,
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The rate of entropy change of the hot reservoir is then
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Similarly, the rate of entropy change of the cold reservoir is
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The net rate of entropy change of everything in this system is
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The net rate of entropy change is zero as it must be in order to satisfy the second law.

8-29 A reversible heat pump with specified reservoir temperatures is considered. The entropy change of two reservoirs is to be calculated and it is to be determined if this heat pump satisfies the increase in entropy principle.

Assumptions  The heat pump operates steadily.  
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Analysis  Since the heat pump is completely reversible, the combination of the coefficient of performance expression, first Law, and thermodynamic temperature scale gives
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The power required to drive this heat pump, according to the coefficient of performance, is then
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According to the first law, the rate at which heat is removed from the low-temperature energy reservoir is
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The rate at which the entropy of the high temperature reservoir changes, according to the definition of the entropy, is
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and that of the low-temperature reservoir is
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The net rate of entropy change of everything in this system is
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as it must be since the heat pump is completely reversible.

8-30E Heat is transferred isothermally from the working fluid of a Carnot engine to a heat sink. The entropy change of the working fluid is given. The amount of heat transfer, the entropy change of the sink, and the total entropy change during the process are to be determined.
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Analysis (a) This is a reversible isothermal process, and the entropy change during such a process is given by 
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Noting that heat transferred from the working fluid is equal to the heat transferred to the sink, the heat transfer become  
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(b)  The entropy change of the sink is determined from
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(c)  Thus the total entropy change of the process is
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This is expected since all processes of the Carnot cycle are reversible processes, and no entropy is generated during a reversible process.

8-31 R-134a enters an evaporator as a saturated liquid-vapor at a specified pressure. Heat is transferred to the refrigerant from the cooled space, and the liquid is vaporized. The entropy change of the refrigerant, the entropy change of the cooled space, and the total entropy change for this process are to be determined.

Assumptions 1 Both the refrigerant and the cooled space involve no internal irreversibilities such as friction. 2 Any temperature change occurs within the wall of the tube, and thus both the refrigerant and the cooled space remain isothermal during this process. Thus it is an isothermal, internally reversible process.
Analysis Noting that both the refrigerant and the cooled space undergo reversible isothermal processes, the entropy change for them can be determined from 
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(a) The pressure of the refrigerant is maintained constant.  Therefore, the temperature of the refrigerant also remains constant at the saturation value,
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     (Table A-12)
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Then,



[image: image27.wmf]kJ/K

 

0.699

=

=

=

D

K

 

257.4

kJ

 

180

t

refrigeran

in

t,

refrigeran

t

refrigeran

T

Q

S


(b)  Similarly,
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(c)  The total entropy change of the process is
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Entropy Changes of Pure Substances

8-32C  Yes, because an internally reversible, adiabatic process involves no irreversibilities or heat transfer.

8-33C According to the conservation of mass principle,
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An entropy balance adapted to this system becomes
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When this is combined with the mass balance, and the constant entropies are removed from the derivatives, it becomes
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Multiplying by dt and integrating the result yields
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8-34C According to the conservation of mass principle,



[image: image35.wmf]out

out

in

CV

m

dt

dm

m

m

dt

dm

&

&

&

-

=

-

=

å

å


An entropy balance adapted to this system becomes
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When this is combined with the mass balance, it becomes
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Multiplying by dt and integrating the result yields
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Since all the entropies are same, this reduces to
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Hence, the entropy of the surroundings can only increase or remain fixed. 
8-35 R-134a is expanded in a turbine during which the entropy remains constant. The enthalpy difference is to be determined.
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Analysis The initial state is superheated vapor and thus
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The entropy is constant during the process. The final state is also superheated vapor and the enthalpy at this state is
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Note that the properties at the inlet and exit states can also be determined from Table A-13E by interpolation but the values will not be as accurate as those by EES. The change in the enthalpy across the turbine is then
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8-36E A piston-cylinder device that is filled with water is heated. The total entropy change is to be determined.
Analysis The initial specific volume is 
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which is between vf and vg for 300 psia. The initial quality and the entropy are then (Table A-5E)
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The final state is superheated vapor and  

     
[image: image45.wmf]6E)

-

A

 

(Table

R

Btu/lbm

 

5706

.

1

   

  

psia

 

300

F

00

5

2

1

2

2

  

×

=

þ

ý

ü

=

=

°

=

s

P

P

T


Hence, the change in the total entropy is
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8-37 Water is compressed in a compressor during which the entropy remains constant. The final temperature and enthalpy are to be determined.
Analysis The initial state is superheated vapor and the entropy is
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Note that the properties can also be determined from Table A-6 by interpolation but the values will not be as accurate as those by EES. The final state is superheated vapor and the properties are (Table A-6)


[image: image48.wmf] 

   

K 

kJ/kg

 

1531

.

8

  

kPa

 

300

2

2

1

2

2

kJ/kg

 

3361.0

C

440.5

=

°

=

þ

ý

ü

×

=

=

=

h

T

s

s

P


8-38E R-134a is expanded isentropically in a closed system. The heat transfer and work production are to be determined.
Assumptions 1 The system is stationary and thus the kinetic and potential energy changes are zero. 2 There are no work interactions involved other than the boundary work. 3 The thermal energy stored in the cylinder itself is negligible. 4 The compression or expansion process is quasi-equilibrium. 
[image: image723.jpg]


Analysis As there is no area under the process line shown on the T-s diagram and this process is reversible,
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The energy balance for this system can be expressed as 
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The initial state properties are
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The final state properties for this isentropic process are (Table A-12E)
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Substituting,
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8-39 An insulated rigid tank contains a saturated liquid-vapor mixture of water at a specified pressure. An electric heater inside is turned on and kept on until all the liquid vaporized. The entropy change of the water during this process is to be determined.
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Analysis From the steam tables (Tables A-4 through A-6)
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Then the entropy change of the steam becomes
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8-40 CD EES A rigid tank is divided into two equal parts by a partition. One part is filled with compressed liquid water while the other side is evacuated. The partition is removed and water expands into the entire tank. The entropy change of the water during this process is to be determined.
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Analysis The properties of the water are (Table A-4)
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Noting that
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Then the entropy change of the water becomes
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8-41 EES Problem 8-40 is reconsidered. The entropy generated is to be evaluated and plotted as a function of surroundings temperature, and the values of the surroundings temperatures that are valid for this problem are to be determined. The surrounding temperature is to vary from 0°C to 100°C.

Analysis The problem is solved using EES, and the results are tabulated and plotted below.  
"Input Data"
P[1]=300 [kPa]

T[1]=60 [C]

m=1.5 [kg]

P[2]=15 [kPa]

Fluid$='Steam_IAPWS'

V[1]=m*spv[1]

spv[1]=volume(Fluid$,T=T[1], P=P[1]) "specific volume of steam at state 1, m^3/kg"
s[1]=entropy(Fluid$,T=T[1],P=P[1]) "entropy of steam at state 1, kJ/kgK"
V[2]=2*V[1] "Steam expands to fill entire volume at state 2"
"State 2 is identified by P[2] and spv[2]"
spv[2]=V[2]/m "specific volume of steam at state 2, m^3/kg"
s[2]=entropy(Fluid$,P=P[2],v=spv[2])  "entropy of steam at state 2, kJ/kgK"
T[2]=temperature(Fluid$,P=P[2],v=spv[2])

DELTAS_sys=m*(s[2]-s[1])  "Total entopy change of steam, kJ/K"
"What does the first law tell us about this problem?"
"Conservation of Energy for the entire, closed system"
E_in - E_out = DELTAE_sys

"neglecting changes in KE and PE for the system:"
DELTAE_sys=m*(intenergy(Fluid$, P=P[2], v=spv[2]) - intenergy(Fluid$,T=T[1],P=P[1]))

E_in = 0

"How do you interpert the energy leaving the system, E_out?  Recall this is a constant volume 

system."
Q_out = E_out

"What is the maximum value of the Surroundings temperature?"
"The maximum possible value for the surroundings temperature occurs when we set 

S_gen = 0=Delta S_sys+sum(DeltaS_surr)"
Q_net_surr=Q_out

S_gen = 0

S_gen = DELTAS_sys+Q_net_surr/Tsurr

"Establish a parametric table for the variables S_gen, Q_net_surr, T_surr, and DELTAS_sys.  In 

the Parametric Table window select T_surr and insert a range of values.  Then place '{' and '}' 

about the S_gen = 0 line; press F3 to solve the table.  The results are shown in Plot Window 1.  

What values of T_surr are valid for this problem?" 
	Sgen
[kJ/K]
	Qnet,surr
[kJ]
	Tsurr
[K]
	(Ssys
[kJ/K]

	0.02533
	37.44
	270
	-0.1133

	0.01146
	37.44
	300
	-0.1133

	0.0001205
	37.44
	330
	-0.1133

	-0.009333
	37.44
	360
	-0.1133

	-0.01733
	37.44
	390
	-0.1133
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8-42E A cylinder is initially filled with R-134a at a specified state. The refrigerant is cooled and condensed at constant pressure. The entropy change of refrigerant during this process is to be determined

Analysis   From the refrigerant tables (Tables A-11E through A-13E),

[image: image727.bmp]

[image: image61.wmf]R

Btu/lbm

 

0.06039

psia

 

120

F

0

5

R

Btu/lbm

 

0.22361

F

100

psia

 

120

F

90

@

2

2

2

1

1

1

×

=

@

þ

ý

ü

=

°

=

×

=

þ

ý

ü

°

=

=

o

f

s

s

P

T

s

T

P


Then the entropy change of the refrigerant becomes
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8-43 An insulated cylinder is initially filled with saturated liquid water at a specified pressure. The water is heated electrically at constant pressure. The entropy change of the water during this process is to be determined.
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Assumptions 1 The kinetic and potential energy changes are negligible.  2 The cylinder is well-insulated and thus heat transfer is negligible. 3 The thermal energy stored in the cylinder itself is negligible. 4 The compression or expansion process is quasi-equilibrium. 
Analysis   From the steam tables (Tables A-4 through A-6),
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Also,


[image: image64.wmf]kg

 

4.75

/kg

m

 

0.001053

m

 

0.005

3

3

1

=

=

=

v

V

m


We take the contents of the cylinder as the system. This is a closed system since no mass enters or leaves. The energy balance for this stationary closed system can be expressed as
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since (U + Wb = (H during a constant pressure quasi-equilibrium process.  Solving for h2,



[image: image66.wmf]kJ/kg

 

33

.

930

kg

 

4.75

kJ

 

2200

13

.

467

in

e,

1

2

=

+

=

+

=

m

W

h

h


Thus,
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Then the entropy change of the water becomes
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8-44 An insulated cylinder is initially filled with saturated R-134a vapor at a specified pressure. The refrigerant expands in a reversible manner until the pressure drops to a specified value. The final temperature in the cylinder and the work done by the refrigerant are to be determined.

Assumptions 1 The kinetic and potential energy changes are negligible.  2 The cylinder is well-insulated and thus heat transfer is negligible. 3 The thermal energy stored in the cylinder itself is negligible. 4 The process is stated to be reversible.

Analysis (a) This is a reversible adiabatic (i.e., isentropic) process, and thus s2 = s1.  From the refrigerant tables (Tables A-11 through A-13),
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Also,
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(b) We take the contents of the cylinder as the system. This is a closed system since no mass enters or leaves. The energy balance for this adiabatic closed system can be expressed as
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Substituting, the work done during this isentropic process is determined to be
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8-45 EES Problem 8-44 is reconsidered. The work done by the refrigerant is to be calculated and plotted as a function of final pressure as the pressure varies from 0.8 MPa to 0.4 MPa. The work done for this process is to be compared to one for which the temperature is constant over the same pressure range.

Analysis The problem is solved using EES, and the results are tabulated and plotted below.  
Procedure IsothermWork(P_1,x_1,m_sys,P_2:Work_out_Isotherm,Q_isotherm,DELTAE_isotherm,T_isotherm)

T_isotherm=Temperature(R134a,P=P_1,x=x_1)

T=T_isotherm

u_1 = INTENERGY(R134a,P=P_1,x=x_1)

v_1 = volume(R134a,P=P_1,x=x_1)

s_1 = entropy(R134a,P=P_1,x=x_1)

u_2 = INTENERGY(R134a,P=P_2,T=T)

s_2 = entropy(R134a,P=P_2,T=T)

"The process is reversible and Isothermal thus the heat transfer is determined by:"  

Q_isotherm = (T+273)*m_sys*(s_2 - s_1)

DELTAE_isotherm = m_sys*(u_2 - u_1)

E_in = Q_isotherm

E_out = DELTAE_isotherm+E_in

Work_out_isotherm=E_out 

END

"Knowns:"
P_1 = 800 [kPa]

x_1 = 1.0

V_sys = 0.05[m^3]

"P_2 = 400 [kPa]"
"Analysis: "
" Treat the rigid tank as a closed system, with no heat transfer in, neglect 

changes in KE and PE of the R134a."
"The isentropic work is determined from:"
E_in - E_out = DELTAE_sys

E_out = Work_out_isen

E_in = 0

DELTAE_sys = m_sys*(u_2 - u_1)

u_1 = INTENERGY(R134a,P=P_1,x=x_1)

v_1 = volume(R134a,P=P_1,x=x_1)

s_1 = entropy(R134a,P=P_1,x=x_1)

V_sys = m_sys*v_1

"Rigid Tank:  The process is reversible and adiabatic or isentropic.  

Then P_2 and s_2 specify state 2."
s_2 = s_1

u_2 = INTENERGY(R134a,P=P_2,s=s_2)

T_2_isen = temperature(R134a,P=P_2,s=s_2)

Call IsothermWork(P_1,x_1,m_sys,P_2:Work_out_Isotherm,Q_isotherm,DELTAE_isotherm,T_isotherm)
	P2
[kPa]
	Workout,isen [kJ]
	Workout,isotherm [kJ]
	Qisotherm
[kJ]

	400
	27.09
	60.02
	47.08

	500
	18.55
	43.33
	33.29

	600
	11.44
	28.2
	21.25

	700
	5.347
	13.93
	10.3

	800
	0
	0
	0
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8-46 Saturated Refrigerant-134a vapor at 160 kPa is compressed steadily by an adiabatic compressor. The minimum power input to the compressor is to be determined.

Assumptions 1 This is a steady-flow process since there is no change with time. 2 Kinetic and potential energy changes are negligible. 3 The device is adiabatic and thus heat transfer is negligible.
Analysis The power input to an adiabatic compressor will be a minimum when the compression process is reversible.  For the reversible adiabatic process we have s2 = s1.  From the refrigerant tables (Tables A-11 through A-13),

[image: image730.emf]0.0 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 11.0

0

100

200

300

400

500

600

700

s [kJ/kg-K]

T [°C]

 6000 kPa

 1000 kPa

 10 kPa

Steam

IAPWS

1

2

3

 



[image: image77.wmf]kJ/kg

 

277.06

kPa

 

00

9

K

kJ/kg

 

0.9419

kJ/kg

 

241.11

/kg

m

 

0.12348

 vapor

sat.

kPa

 

160

2

1

2

2

kPa

 

160

@

1

kPa

 

160

@

1

3

kPa

 

160

@

1

1

=

þ

ý

ü

=

=

×

=

=

=

=

=

=

þ

ý

ü

=

h

s

s

P

s

s

h

h

P

g

g

g

v

v


Also,
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There is only one inlet and one exit, and thus 
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. We take the compressor as the system, which is a control volume since mass crosses the boundary. The energy balance for this steady-flow system can be expressed in the rate form as
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 Substituting, the minimum power supplied to the compressor is determined to be
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8-47 An insulated cylinder is initially filled with superheated steam at a specified state. The steam is compressed in a reversible manner until the pressure drops to a specified value. The work input during this process is to be determined.
Assumptions 1 The kinetic and potential energy changes are negligible.  2 The cylinder is well-insulated and thus heat transfer is negligible. 3 The thermal energy stored in the cylinder itself is negligible. 4 The process is stated to be reversible. 
Analysis This is a reversible adiabatic (i.e., isentropic) process, and thus s2 = s1.  From the steam tables (Tables A-4 through A-6),

[image: image731.bmp]

[image: image83.wmf]kJ/kg

 

2773.8

MPa

 

1

K

kJ/kg

 

7.0792

kJ/kg

 

2571.0

/kg

m

 

0.63402

C

150

kPa

 

300

2

1

2

2

1

1

3

1

1

1

=

þ

ý

ü

=

=

×

=

=

=

þ

ý

ü

°

=

=

u

s

s

P

s

u

T

P

v


Also,
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We take the contents of the cylinder as the system. This is a closed system since no mass enters or leaves. The energy balance for this adiabatic closed system can be expressed as
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Substituting, the work input during this adiabatic process is determined to be
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8-48 EES Problem 8-47 is reconsidered. The work done on the steam is to be determined and plotted as a function of final pressure as the pressure varies from 300 kPa to 1 MPa.

Analysis The problem is solved using EES, and the results are tabulated and plotted below.  
"Knowns:"
P_1 = 300 [kPa]

T_1 = 150 [C]

V_sys = 0.05 [m^3]

"P_2 = 1000 [kPa]"
"Analysis: "
Fluid$='Steam_IAPWS'

" Treat the piston-cylinder as a closed system, with no heat transfer in, neglect 

changes in KE and PE of the Steam.  The process is reversible and adiabatic thus isentropic."
"The isentropic work is determined from:"
E_in - E_out = DELTAE_sys

E_out = 0 [kJ]

E_in = Work_in 

DELTAE_sys = m_sys*(u_2 - u_1)

u_1 = INTENERGY(Fluid$,P=P_1,T=T_1)

v_1 = volume(Fluid$,P=P_1,T=T_1)

s_1 = entropy(Fluid$,P=P_1,T=T_1)

V_sys = m_sys*v_1

" The process is reversible and adiabatic or isentropic.  

Then P_2 and s_2 specify state 2."
s_2 = s_1

u_2 = INTENERGY(Fluid$,P=P_2,s=s_2)

T_2_isen = temperature(Fluid$,P=P_2,s=s_2)
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	P2
[kPa]
	Workin [kJ]

	300
	0

	400
	3.411

	500
	6.224

	600
	8.638

	700
	10.76

	800
	12.67

	900
	14.4

	1000
	16


8-49 A cylinder is initially filled with saturated water vapor at a specified temperature. Heat is transferred to the steam, and it expands in a reversible and isothermal manner until the pressure drops to a specified value. The heat transfer and the work output for this process are to be determined.
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Assumptions 1 The kinetic and potential energy changes are negligible.  2 The cylinder is well-insulated and thus heat transfer is negligible. 3 The thermal energy stored in the cylinder itself is negligible. 4 The process is stated to be reversible and isothermal.

Analysis From the steam tables (Tables A-4 through A-6),
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The heat transfer for this reversible isothermal process can be determined from
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We take the contents of the cylinder as the system. This is a closed system since no mass enters or leaves. The energy balance for this closed system can be expressed as
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Substituting, the work done during this process is determined to be
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8-50 EES Problem 8-49 is reconsidered. The heat transferred to the steam and the work done are to be determined and plotted as a function of final pressure as the pressure varies from the initial value to the final value of 800 kPa.

Analysis The problem is solved using EES, and the results are tabulated and plotted below.  
"Knowns:"
T_1 = 200 [C]

x_1 = 1.0

m_sys = 1.2 [kg]

{P_2 = 800"[kPa]"}
"Analysis: "
Fluid$='Steam_IAPWS'

" Treat the piston-cylinder as a closed system,  neglect changes in KE and PE of the Steam.  The process is reversible and isothermal ."
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T_2 = T_1

E_in - E_out = DELTAE_sys

E_in = Q_in

E_out = Work_out

DELTAE_sys = m_sys*(u_2 - u_1)

P_1 = pressure(Fluid$,T=T_1,x=1.0)

u_1 = INTENERGY(Fluid$,T=T_1,x=1.0)

v_1 = volume(Fluid$,T=T_1,x=1.0)

s_1 = entropy(Fluid$,T=T_1,x=1.0)

V_sys = m_sys*v_1

" The process is reversible and isothermal. 

Then P_2 and T_2 specify state 2."
u_2 = INTENERGY(Fluid$,P=P_2,T=T_2)

s_2 = entropy(Fluid$,P=P_2,T=T_2)

Q_in= (T_1+273)*m_sys*(s_2-s_1)
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8-51 Water is compressed isentropically in a closed system. The work required is to be determined.
Assumptions 1 The system is stationary and thus the kinetic and potential energy changes are zero. 2 There are no work interactions involved other than the boundary work. 3 The thermal energy stored in the cylinder itself is negligible. 4 The compression or expansion process is quasi-equilibrium. 
[image: image736.wmf]Analysis The energy balance for this system can be expressed as 
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The initial state properties are
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Since the entropy is constant during this process,
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Substituting,
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8-52 R-134a undergoes an isothermal process in a closed system. The work and heat transfer are to be determined.
Assumptions 1 The system is stationary and thus the kinetic and potential energy changes are zero. 2 There are no work interactions involved other than the boundary work. 3 The thermal energy stored in the cylinder itself is negligible. 4 The compression or expansion process is quasi-equilibrium. 
[image: image738.bmp]Analysis The energy balance for this system can be expressed as 

   
[image: image95.wmf])

(

1

2

out

in

energies

 

etc.

 

potential,

   

kinetic,

 

internal,

in 

 

Change

system

mass

 

and

 

 work,

heat,

by 

nsfer

energy tra

Net 

    

out

in

u

u

m

U

Q

W

E

E

E

-

=

D

=

-

D

=

-

4

3

4

2

1

4

3

4

2

1


The initial state properties are


[image: image96.wmf]13)

-

A

 

(Table

K

kJ/kg

 

0134

.

1

kJ/kg

 

74

.

246

   

C

20

  

kPa

 

240

1

1

1

1

  

×

=

=

þ

ý

ü

°

=

=

s

u

T

P


For this isothermal process, the final state properties are (Table A-11)
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The heat transfer is determined from
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The negative sign shows that the heat is actually transferred from the system. That is,
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The work required is determined from the energy balance to be
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8-53 The total heat transfer for the process 1-3 shown in the figure is to be determined.
Analysis For a reversible process, the area under the process line in T-s diagram is equal to the heat transfer during that process. Then,
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8-54 The total heat transfer for the process 1-2 shown in the figure is to be determined.
Analysis For a reversible process, the area under the process line in T-s diagram is equal to the heat transfer during that process. Then,
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8-55 The heat transfer for the process 1-3 shown in the figure is to be determined.
Analysis For a reversible process, the area under the process line in T-s diagram is equal to the heat transfer during that process. Then,
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8-56E The total heat transfer for the process 1-2 shown in the figure is to be determined.
Analysis For a reversible process, the area under the process line in T-s diagram is equal to the heat transfer during that process. Then,
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8-57 The change in the entropy of R-134a as it is heated at constant pressure is to be calculated using the relation ds = ((Q /T) int rev, and it is to be verified by using R-134a tables.
Analysis As R-134a is converted from a saturated liquid to a saturated vapor, both the pressure and temperature remains constant. Then, the relation ds = ((Q /T) int rev reduces to
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When this result is integrated between the saturated liquid and saturated vapor states, the result is (Table A-12)
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Finding the result directly from the R-134a tables 
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(Table A-12)

The two results are practically identical.

8-58 Steam is expanded in an isentropic turbine. The work produced is to be determined.

Assumptions 1 This is a steady-flow process since there is no change with time. 2 The process is isentropic (i.e., reversible-adiabatic). 
Analysis There is only one inlet and one exit, and thus 
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. We take the turbine as the system, which is a control volume since mass crosses the boundary. The energy balance for this steady-flow system can be expressed in the rate form as
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The inlet state properties are
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For this isentropic process, the final state properties are (Table A-5)
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Substituting,
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8-59 R-134a is compressed in an isentropic compressor. The work required is to be determined.

Assumptions 1 This is a steady-flow process since there is no change with time. 2 The process is isentropic (i.e., reversible-adiabatic). 
Analysis There is only one inlet and one exit, and thus 
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. We take the compressor as the system, which is a control volume since mass crosses the boundary. The energy balance for this steady-flow system can be expressed in the rate form as
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The inlet state properties are
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For this isentropic process, the final state enthalpy is
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Substituting,
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8-60 Steam is expanded in an isentropic turbine. The work produced is to be determined.

Assumptions 1 This is a steady-flow process since there is no change with time. 2 The process is isentropic (i.e., reversible-adiabatic). 
Analysis There is one inlet and two exits. We take the turbine as the system, which is a control volume since mass crosses the boundary. The energy balance for this steady-flow system can be expressed in the rate form as
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From a mass balance,
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Noting that the expansion process is isentropic, the enthalpies at three states are determined as follows:
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Substituting,
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8-61 Heat is added to a pressure cooker that is maintained at a specified pressure. The minimum entropy change of the thermal-energy reservoir supplying this heat is to be determined.

Assumptions 1 Only water vapor escapes through the pressure relief valve. 
Analysis According to the conservation of mass principle,
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An entropy balance adapted to this system becomes



[image: image128.wmf]0

)

(

out

surr

³

+

+

s

m

dt

ms

d

dt

dS

&


When this is combined with the mass balance, it becomes
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Multiplying by dt and integrating the result yields
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The properties at the initial and final states are (from Table A-5 at 200 kPa)
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The initial and final masses are
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The entropy of escaping water vapor is
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Substituting,
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The entropy change of the thermal energy reservoir must then satisfy
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8-62 Heat is added to a pressure cooker that is maintained at a specified pressure. Work is also done on water. The minimum entropy change of the thermal-energy reservoir supplying this heat is to be determined.

Assumptions 1 Only water vapor escapes through the pressure relief valve. 
Analysis According to the conservation of mass principle,
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An entropy balance adapted to this system becomes
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When this is combined with the mass balance, it becomes
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Multiplying by dt and integrating the result yields
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The properties at the initial and final states are (from Table A-5 at 200 kPa)
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The initial and final masses are
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The entropy of escaping water vapor is
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Substituting,
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The entropy change of the thermal energy reservoir must then satisfy
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8-63 A cylinder is initially filled with saturated water vapor mixture at a specified temperature. Steam undergoes a reversible heat addition and an isentropic process. The processes are to be sketched and heat transfer for the first process and work done during the second process are to be determined.

Assumptions 1 The kinetic and potential energy changes are negligible.  2 The thermal energy stored in the cylinder itself is negligible. 3 Both processes are reversible.
Analysis (b) From the steam tables (Tables A-4 through A-6),
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We take the contents of the cylinder as the system. This is a closed system since no mass enters or leaves. The energy balance for this closed system can be expressed as
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For process 1-2, it reduces to
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(c) For process 2-3, it reduces to
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8-64 Steam expands in an adiabatic turbine. Steam leaves the turbine at two different pressures. The process is to be sketched on a T-s diagram and the work done by the steam per unit mass of the steam at the inlet are to be determined.

Assumptions 1 The kinetic and potential energy changes are negligible.  
Analysis (b) From the steam tables (Tables A-4 through A-6),
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A mass balance on the control volume gives


[image: image153.wmf]3

2

1

m

m

m

&

&

&

+

=

   where

[image: image154.wmf]1

3

1

2

9

.

0

1

.

0

m

m

m

m

&

&

&

&

=

=


We take the turbine as the system, which is a control volume. The energy balance for this steady-flow system can be expressed in the rate form as
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The actual work output per unit mass of steam at the inlet is
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8-65E An insulated rigid can initially contains R-134a at a specified state. A crack develops, and refrigerant escapes slowly. The final mass in the can is to be determined when the pressure inside drops to a specified value.  

 Assumptions 1 The can is well-insulated and thus heat transfer is negligible.  2 The refrigerant that remains in the can underwent a reversible adiabatic process.

Analysis Noting that for a reversible adiabatic (i.e., isentropic) process, s1 = s2, the properties of the refrigerant in the can are (Tables A-11E through A-13E)
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Thus the final mass of the refrigerant in the can is
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Entropy Change of Incompressible Substances

8-66C  No, because entropy is not a conserved property.

8-67 A hot copper block is dropped into water in an insulated tank. The final equilibrium temperature of the tank and the total entropy change are to be determined.

Assumptions 1 Both the water and the copper block are incompressible substances with constant specific heats at room temperature. 2 The system is stationary and thus the kinetic and potential energies are negligible. 3 The tank is well-insulated and thus there is no heat transfer. 

Properties The density and specific heat of water at 25(C are ( = 997 kg/m3 and cp = 4.18 kJ/kg.(C. The specific heat of copper at 27(C is  cp = 0.386 kJ/kg.(C (Table A-3).

Analysis We take the entire contents of the tank, water + copper block, as the system. This is a closed system since no mass crosses the system boundary during the process. The energy balance for this system can be expressed as
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Using specific heat values for copper and liquid water at room temperature and substituting,
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T2 = 27.0(C
The entropy generated during this process is determined from
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Thus,
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8-68 Computer chips are cooled by placing them in saturated liquid R-134a. The entropy changes of the chips, R-134a, and the entire system are to be determined.

Assumptions 1 The system is stationary and thus the kinetic and potential energy changes are zero. 2 There are no work interactions involved. 3 There is no heat transfer between the system and the surroundings.
Analysis (a) The energy balance for this system can be expressed as 
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The heat released by the chips is
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The mass of the refrigerant vaporized during this heat exchange process is
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Only a small fraction of R-134a is vaporized during the process. Therefore, the temperature of R-134a remains constant during the process. The change in the entropy of the R-134a is (at -40(F from Table A-11)
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(b) The entropy change of the chips is
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(c) The total entropy change is
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The positive result for the total entropy change (i.e., entropy generation) indicates that this process is possible.

8-69 A hot iron block is dropped into water in an insulated tank. The total entropy change during this process is to be determined.

Assumptions 1 Both the water and the iron block are incompressible substances with constant specific heats at room temperature. 2 The system is stationary and thus the kinetic and potential energies are negligible. 3 The tank is well-insulated and thus there is no heat transfer. 4 The water that evaporates, condenses back.

Properties The specific heat of water at 25(C is cp = 4.18 kJ/kg.(C. The specific heat of iron at room temperature is  cp = 0.45 kJ/kg.(C (Table A-3).

Analysis We take the entire contents of the tank, water + iron block, as the system. This is a closed system since no mass crosses the system boundary during the process. The energy balance for this system can be expressed as
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Substituting,
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The entropy generated during this process is determined from
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Thus,
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Discussion The results can be improved somewhat by using specific heats at average temperature.

8-70 An aluminum block is brought into contact with an iron block in an insulated enclosure. The final equilibrium temperature and the total entropy change for this process  are to be determined.

Assumptions 1 Both the aluminum and the iron block are incompressible substances with constant specific heats. 2 The system is stationary and thus the kinetic and potential energies are negligible. 3 The system is well-insulated and thus there is no heat transfer. 

Properties The specific heat of aluminum at the anticipated average temperature of 450 K is cp = 0.973 kJ/kg.(C. The specific heat of iron at room temperature (the only value available in the tables) is  cp = 0.45 kJ/kg.(C (Table A-3). 

Analysis We take the iron+aluminum blocks as the system, which is a closed system. The energy balance for this system can be expressed as
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Substituting,
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 The total entropy change for this process is determined from
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Thus,
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8-71 EES Problem 8-70 is reconsidered. The effect of the mass of the iron block on the final equilibrium temperature and the total entropy change for the process is to be studied. The mass of the iron is to vary from 1  to 10 kg. The equilibrium temperature and the total entropy change are to be plotted as a function of iron mass.

Analysis The problem is solved using EES, and the results are tabulated and plotted below.  
"Knowns:"
T_1_iron = 100 [C]

{m_iron = 20 [kg]}
T_1_al = 200 [C]

m_al = 20 [kg]

C_al = 0.973 [kJ/kg-K]  "FromTable A-3 at the anticipated average temperature of 450 K."
C_iron= 0.45 [kJ/kg-K]  "FromTable A-3 at room temperature, the only value available."
"Analysis: "
" Treat the iron plus aluminum as a closed system, with no heat transfer in, no work out, neglect changes in KE and PE of the system.  "
"The final temperature is found from the energy balance."
E_in - E_out = DELTAE_sys

E_out = 0

E_in = 0

DELTAE_sys = m_iron*DELTAu_iron  + m_al*DELTAu_al

DELTAu_iron = C_iron*(T_2_iron - T_1_iron)

DELTAu_al = C_al*(T_2_al - T_1_al)

"the iron and aluminum reach thermal equilibrium:"
T_2_iron = T_2

T_2_al = T_2

DELTAS_iron = m_iron*C_iron*ln((T_2_iron+273) / (T_1_iron+273))

DELTAS_al = m_al*C_al*ln((T_2_al+273) / (T_1_al+273))

DELTAS_total = DELTAS_iron + DELTAS_al

	(Stotal [kJ/kg]
	miron
[kg]
	T2
[C]

	0.01152
	1
	197.7

	0.0226
	2
	195.6

	0.03326
	3
	193.5

	0.04353
	4
	191.5

	0.05344
	5
	189.6

	0.06299
	6
	187.8

	0.07221
	7
	186.1

	0.08112
	8
	184.4

	0.08973
	9
	182.8

	0.09805
	10
	181.2


8-72 An iron block and a copper block are dropped into a large lake. The total amount of entropy change when both blocks cool to the lake temperature is to be determined.

Assumptions 1 The water, the iron block and the copper block are incompressible substances with constant specific heats at room temperature. 2 Kinetic and potential energies are negligible. 

Properties The specific heats of iron and copper at room temperature are ciron = 0.45 kJ/kg.(C and ccopper = 0.386 kJ/kg.(C (Table A-3).

Analysis The thermal-energy capacity of the lake is very large, and thus the temperatures of both the iron and the copper blocks will drop to the lake temperature (15(C) when the thermal equilibrium is established.  Then the entropy changes of the blocks become
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We take both the iron and the copper blocks, as the system. This is a closed system since no mass crosses the system boundary during the process. The energy balance for this system can be expressed as
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Substituting,
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Then the total entropy change for this process is
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8-73 An adiabatic pump is used to compress saturated liquid water in a reversible manner. The work input is to be determined by different approaches.

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 3 Heat transfer to or from the fluid is negligible. 
Analysis The properties of water at the inlet and exit of the pump are (Tables A-4 through A-6)
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(a) Using the entropy data from the compressed liquid water table 
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(b) Using inlet specific volume and pressure values 
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Error = 0.3%
(b) Using average specific volume and pressure values 
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Error = 0%
Discussion The results show that any of the method may be used to calculate reversible pump work.

Entropy Changes of Ideal Gases

8-74C  For ideal gases, cp = cv + R and
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Thus,
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8-75C  For an ideal gas, dh = cp dT and v = RT/P.  From the second Tds relation,
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Integrating,
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Since cp is assumed to be constant.

8-76C  No.  The entropy of an ideal gas depends on the pressure as well as the temperature.

8-77C  Setting (s = 0 gives
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8-78C  The Pr and vr are called relative pressure and relative specific volume, respectively.  They are derived for isentropic processes of ideal gases, and thus their use is limited to isentropic processes only.

8-79C  The entropy of a gas can change during an isothermal process since entropy of an ideal gas depends on the pressure as well as the temperature.
8-80C  The entropy change relations of an ideal gas simplify to


(s  =  cp ln(T2/T1) for a constant pressure process

and
(s  =  cv ln(T2/T1) for a constant volume process.

Noting that cp  > cv, the entropy change will be larger for a constant pressure process.

8-81 The entropy difference between the two states of oxygen is to be determined.

Assumptions Oxygen is an ideal gas with constant specific heats.

Properties The specific heat of oxygen at the average temperature of (39+337)/2=188(C=461 K is cp = 0.960 kJ/kg(K (Table A-2b).

Analysis From the entropy change relation of an ideal gas,
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since the pressure is same at the initial and final states.

8-82 The entropy changes of helium and nitrogen is to be compared for the same initial and final states.
Assumptions Helium and nitrogen are ideal gases with constant specific heats.

Properties The properties of helium are cp = 5.1926 kJ/kg(K, R = 2.0769 kJ/kg(K (Table A-2a). The specific heat of nitrogen at the average temperature of (427+27)/2=227(C=500 K is cp = 1.056 kJ/kg(K (Table A-2b). The gas constant of nitrogen is R = 0.2968 kJ/kg(K (Table A-2a).

Analysis From the entropy change relation of an ideal gas,
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Hence, helium undergoes the largest change in entropy. 

8-83E The entropy change of air during an expansion process is to be determined.
Assumptions Air is an ideal gas with constant specific heats.

Properties The specific heat of air at the average temperature of (500+50)/2=275(F is cp = 0.243 Btu/lbm(R (Table A-2Eb). The gas constant of air is R = 0.06855 Btu/lbm(R (Table A-2Ea).

Analysis From the entropy change relation of an ideal gas,
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8-84 The final temperature of air when it is expanded isentropically is to be determined.

Assumptions Air is an ideal gas with constant specific heats.

Properties The specific heat ratio of air at an anticipated average temperature of 550 K is k = 1.381 (Table A-2b).

Analysis From the isentropic relation of an ideal gas under constant specific heat assumption,
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Discussion The average air temperature is (750+397.4)/2=573.7 K, which is sufficiently close to the assumed average temperature of 550 K.

8-85E The final temperature of air when it is expanded isentropically is to be determined.

Assumptions Air is an ideal gas with constant specific heats.

Properties The specific heat ratio of air at an anticipated average temperature of 300(F is k = 1.394 (Table A-2Eb).

Analysis From the isentropic relation of an ideal gas under constant specific heat assumption,
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Discussion The average air temperature is (960+609)/2=785 R=325(F, which is sufficiently close to the assumed average temperature of 300(F.

8-86 The final temperatures of helium and nitrogen when they are compressed isentropically are to be compared.
Assumptions Helium and nitrogen are ideal gases with constant specific heats.

Properties The specific heat ratios of helium and nitrogen at room temperature are k = 1.667 and k = 1.4, respectively (Table A-2a).

Analysis From the isentropic relation of an ideal gas under constant specific heat assumption,
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Hence, the helium produces the greater temperature when it is compressed.

8-87 The final temperatures of neon and air when they are expanded isentropically are to be compared.
Assumptions Neon and air are ideal gases with constant specific heats.

Properties The specific heat ratios of neon and air at room temperature are k = 1.667 and k = 1.4, respectively (Table A-2a).

Analysis From the isentropic relation of an ideal gas under constant specific heat assumption,
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Hence, the neon produces the smaller temperature when it is expanded.

8-88 An insulated cylinder initially contains air at a specified state. A resistance heater inside the cylinder is turned on, and air is heated for 15 min at constant pressure. The entropy change of air during this process is to be determined for the cases of constant and variable specific heats. 

Assumptions At specified conditions, air can be treated as an ideal gas.

Properties The gas constant of air is R = 0.287 kJ/kg.K  (Table A-1).  

Analysis  The mass of the air and the electrical work done during this process are
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The energy balance for this stationary closed system can be expressed as
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since (U + Wb = (H during a constant pressure quasi-equilibrium process. 

(a) Using a constant cp value at the anticipated average temperature of 450 K, the final temperature becomes

Thus,
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Then the entropy change becomes
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(b)  Assuming variable specific heats,
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From the air table (Table A-21, we read 

 = 2.5628 kJ/kg·K corresponding to this h2 value.  Then,
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8-89 A cylinder contains N2 gas at a specified pressure and temperature. The gas is compressed polytropically until the volume is reduced by half. The entropy change of nitrogen during this process is to be determined. 

Assumptions 1 At specified conditions, N2 can be treated as an ideal gas. 2 Nitrogen has constant specific heats at room temperature.

Properties The gas constant of nitrogen is R = 0.297 kJ/kg.K (Table A-1).  The constant volume specific heat of nitrogen at room temperature is cv = 0.743 kJ/kg.K (Table A-2).

Analysis From the polytropic relation,
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Then the entropy change of nitrogen becomes
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8-90 EES Problem 8-89 is reconsidered. The effect of varying the polytropic exponent from 1 to 1.4 on the entropy change of the nitrogen is to be investigated, and the processes are to be shown on a common P-v diagram.

Analysis The problem is solved using EES, and the results are tabulated and plotted below.  
Function BoundWork(P[1],V[1],P[2],V[2],n)

"This function returns the Boundary Work for the polytropic process.  This function is required 

since the expression for boundary work depens on whether n=1 or n<>1"
  If n<>1 then

     BoundWork:=(P[2]*V[2]-P[1]*V[1])/(1-n)"Use Equation 3-22 when n=1"
  else

    BoundWork:= P[1]*V[1]*ln(V[2]/V[1]) "Use Equation 3-20 when n=1"
  endif

end

n=1

P[1] = 120 [kPa]

T[1] = 27 [C]

m = 1.2 [kg]

V[2]=V[1]/2 

Gas$='N2'

MM=molarmass(Gas$)

R=R_u/MM

R_u=8.314 [kJ/kmol-K]

"System:  The gas enclosed in the piston-cylinder device."
"Process: Polytropic expansion or compression, P*V^n = C"
P[1]*V[1]=m*R*(T[1]+273) 

P[2]*V[2]^n=P[1]*V[1]^n

W_b = BoundWork(P[1],V[1],P[2],V[2],n)

"Find the temperature at state 2 from the pressure and specific volume."
T[2]=temperature(gas$,P=P[2],v=V[2]/m)

"The entropy at states 1 and 2 is:"
s[1]=entropy(gas$,P=P[1],v=V[1]/m)

s[2]=entropy(gas$,P=P[2],v=V[2]/m)

DELTAS=m*(s[2] - s[1])

"Remove the {} to generate the P-v plot data"
{Nsteps = 10

VP[1]=V[1]

PP[1]=P[1]

Duplicate i=2,Nsteps

      VP[i]=V[1]-i*(V[1]-V[2])/Nsteps

      PP[i]=P[1]*(V[1]/VP[i])^n

END  }

	(S [kJ/kg]
	n
	Wb [kJ]

	-0.2469
	1
	-74.06

	-0.2159
	1.05
	-75.36

	-0.1849
	1.1
	-76.69

	-0.1539
	1.15
	-78.05

	-0.1229
	1.2
	-79.44

	-0.09191
	1.25
	-80.86

	-0.06095
	1.3
	-82.32

	-0.02999
	1.35
	-83.82

	0.0009849
	1.4
	-85.34
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8-91E A fixed mass of helium undergoes a process from one specified state to another specified state. The entropy change of helium is to be determined for the cases of reversible and irreversible processes.   

Assumptions 1 At specified conditions, helium can be treated as an ideal gas. 2 Helium has constant specific heats at room temperature.

Properties The gas constant of helium is R = 0.4961 Btu/lbm.R (Table A-1E). The constant volume specific heat of helium is       cv = 0.753 Btu/lbm.R (Table A-2E).

Analysis From the ideal-gas entropy change relation,
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The entropy change will be the same for both cases.

8-92 One side of a partitioned insulated rigid tank contains an ideal gas at a specified temperature and pressure while the other side is evacuated. The partition is removed, and the gas fills the entire tank. The total entropy change during this process is to be determined.

Assumptions The gas in the tank is given to be an ideal gas, and thus ideal gas relations apply.

Analysis Taking the entire rigid tank as the system, the energy balance can be expressed as
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since u = u(T) for an ideal gas. Then the entropy change of the gas becomes



[image: image223.wmf](

)

(

)

(

)

kJ/K

28.81

 

2

ln

 

K

kJ/kmol

 

8.314

kmol

 

5

ln

ln

ln

1

2

1

2

0

1

2

avg

,

=

×

=

=

÷

÷

ø

ö

ç

ç

è

æ

+

=

D

V

V

V

V

v

u

u

NR

R

T

T

c

N

S

Ã


This also represents the total entropy change since the tank does not contain anything else, and there are no interactions with the surroundings.  

8-93 Air is compressed in a piston-cylinder device in a reversible and adiabatic manner. The final temperature and the work are to be determined for the cases of constant and variable specific heats.

Assumptions 1 At specified conditions, air can be treated as an ideal gas. 2 The process is given to be reversible and adiabatic, and thus isentropic. Therefore, isentropic relations of ideal gases apply.

Properties The gas constant of air is R = 0.287 kJ/kg.K  (Table A-1).  The specific heat ratio of air at low to moderately high temperatures is k = 1.4 (Table A-2).

Analysis (a) Assuming constant specific heats, the ideal gas isentropic relations give
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Then,
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We take the air in the cylinder as the system. The energy balance for this stationary closed system can be expressed as
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Thus,
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(b)  Assuming variable specific heats, the final temperature can be determined using the relative pressure data (Table A-21),

and
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Then the work input becomes
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8-94 EES Problem 8-93 is reconsidered. The work done and final temperature during the compression process are to be calculated and plotted as functions of the final pressure for the two cases as the final pressure varies from 100 kPa to 800 kPa.

Analysis The problem is solved using EES, and the results are tabulated and plotted below.  
Procedure ConstPropSol(P_1,T_1,P_2,Gas$:Work_in_ConstProp,T2_ConstProp)

C_P=SPECHEAT(Gas$,T=27) 

MM=MOLARMASS(Gas$) 

R_u=8.314 [kJ/kmol-K]

R=R_u/MM

C_V = C_P - R 

k = C_P/C_V

T2= (T_1+273)*(P_2/P_1)^((k-1)/k)

T2_ConstProp=T2-273 "[C]"
DELTAu = C_v*(T2-(T_1+273)) 

Work_in_ConstProp = DELTAu 

End

"Knowns:"
P_1 = 100 [kPa]

T_1 = 17 [C]

P_2 = 800 [kPa]

"Analysis: "
" Treat the piston-cylinder as a closed system, with no heat transfer in, neglect 

changes in KE and PE of the air.  The process is reversible and adiabatic thus isentropic."
"The isentropic work is determined from:"
e_in - e_out = DELTAe_sys

e_out = 0 [kJ/kg]

e_in = Work_in 

DELTAE_sys = (u_2 - u_1) 

u_1 = INTENERGY(air,T=T_1)

v_1 = volume(air,P=P_1,T=T_1)

s_1 = entropy(air,P=P_1,T=T_1)

" The process is reversible and adiabatic or isentropic.  

Then P_2 and s_2 specify state 2."
s_2 = s_1

u_2 = INTENERGY(air,P=P_2,s=s_2)

T_2_isen=temperature(air,P=P_2,s=s_2)

Gas$ = 'air'

Call ConstPropSol(P_1,T_1,P_2,Gas$:
  Work_in_ConstProp,T2_ConstProp)
	P2
[kPa]
	Workin
[kJ/kg]
	Workin,ConstProp
[kJ/kg]

	100
	0
	0

	200
	45.63
	45.6

	300
	76.84
	76.77

	400
	101.3
	101.2

	500
	121.7
	121.5

	600
	139.4
	139.1

	700
	155.2
	154.8

	800
	169.3
	168.9


8-95 An insulated rigid tank contains argon gas at a specified pressure and temperature. A valve is opened, and argon escapes until the pressure drops to a specified value. The final mass in the tank is to be determined.

Assumptions 1 At specified conditions, argon can be treated as an ideal gas. 2 The process is given to be reversible and adiabatic, and thus isentropic. Therefore, isentropic relations of ideal gases apply.

Properties The specific heat ratio of argon is  k = 1.667 (Table A-2).

Analysis From the ideal gas isentropic relations,
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The final mass in the tank is determined from the ideal gas relation,
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8-96 EES Problem 8-95 is reconsidered. The effect of the final pressure on the final mass in the tank is to be investigated as the pressure varies from 450 kPa to 150 kPa, and the results are to be plotted.

Analysis The problem is solved using EES, and the results are tabulated and plotted below.  
"Knowns:"
C_P = 0.5203"[kJ/kg-K ]"
C_V = 0.3122 "[kJ/kg-K ]"
R=0.2081 "[kPa-m^3/kg-K]"
P_1= 450"[kPa]"
T_1 = 30"[C]"
m_1 = 4"[kg]"
P_2= 150"[kPa]"
"Analysis:

We assume the mass that stays in the tank undergoes an isentropic expansion 

process.  This allows us to determine the final temperature of that gas at the final 

pressure in the tank by using the isentropic relation:"
k = C_P/C_V

T_2 = ((T_1+273)*(P_2/P_1)^((k-1)/k)-273)"[C]"
V_2 = V_1

P_1*V_1=m_1*R*(T_1+273)

P_2*V_2=m_2*R*(T_2+273)


	m2
[kg]
	P2
[kPa]

	2.069
	150

	2.459
	200

	2.811
	250

	3.136
	300

	3.44
	350

	3.727
	400

	4
	450


8-97E Air is accelerated in an adiabatic nozzle. Disregarding irreversibilities, the exit velocity of air is to be determined.

Assumptions 1 Air is an ideal gas with variable specific heats. 2 The process is given to be reversible and adiabatic, and thus isentropic. Therefore, isentropic relations of ideal gases apply. 2 The nozzle operates steadily.

Analysis Assuming variable specific heats, the inlet and exit properties are determined to be

and
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We take the nozzle as the system, which is a control volume. The energy balance for this steady-flow system can be expressed in the rate form as
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Therefore, 
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8-98E Air is expanded in an isentropic turbine. The exit temperature of the air and the power produced are to be determined.

Assumptions 1 This is a steady-flow process since there is no change with time. 2 The process is isentropic (i.e., reversible-adiabatic).  3 Air is an ideal gas with constant specific heats.
Properties The properties of air at an anticipated average temperature of 600°F are cp = 0.250 Btu/lbm·R and k = 1.377 (Table A-2Eb). The gas constant of air is R = 0.3704 psia(ft3/lbm(R (Table A-1E).
Analysis There is only one inlet and one exit, and thus 
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. We take the turbine as the system, which is a control volume since mass crosses the boundary. The energy balance for this steady-flow system can be expressed in the rate form as
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The exit temperature of the air for this isentropic process is
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The specific volume of air at the inlet and the mass flow rate are
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Substituting into the energy balance equation gives
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8-99 Nitrogen is compressed in an adiabatic compressor. The  minimum work input is to be determined.

Assumptions 1 This is a steady-flow process since there is no change with time. 2 The process is adiabatic, and thus there is no heat transfer.  3 Nitrogen is an ideal gas with constant specific heats.
Properties The properties of nitrogen at an anticipated average temperature of 400 K are cp = 1.044 kJ/kg·K and k = 1.397 (Table A-2b). 
Analysis There is only one inlet and one exit, and thus 
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. We take the compressor as the system, which is a control volume since mass crosses the boundary. The energy balance for this steady-flow system can be expressed in the rate form as
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For the minimum work input to the compressor, the process must be reversible as well as adiabatic (i.e., isentropic). This being the case, the exit temperature will be
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Substituting into the energy balance equation gives
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8-100 Oxygen is expanded in an adiabatic nozzle. The maximum velocity at the exit is to be determined.

Assumptions 1 This is a steady-flow process since there is no change with time. 2 The process is adiabatic, and thus there is no heat transfer. 3 Oxygen is an ideal gas with constant specific heats.
Properties The properties of oxygen at room temperature are cp = 0.918 kJ/kg·K and k = 1.395 (Table A-2a).

Analysis For the maximum velocity at the exit, the process must be reversible as well as adiabatic (i.e., isentropic). This being the case, the exit temperature will be
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There is only one inlet and one exit, and thus 
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. We take nozzle as the system, which is a control volume since mass crosses the boundary. The energy balance for this steady-flow system can be expressed in the rate form as
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Solving for the exit velocity,
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8-101 Air is expanded in an adiabatic nozzle by a polytropic process. The temperature and velocity at the exit are to be determined.

Assumptions 1 This is a steady-flow process since there is no change with time. 2 There is no heat transfer or shaft work associated with the process. 3 Air is an ideal gas with constant specific heats.
Properties The properties of air at room temperature are cp = 1.005 kJ/kg·K and k = 1.4 (Table A-2a).

Analysis For the polytropic process of an ideal gas, 
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, and the exit temperature is given by
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There is only one inlet and one exit, and thus 
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. We take nozzle as the system, which is a control volume since mass crosses the boundary. The energy balance for this steady-flow system can be expressed in the rate form as
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Solving for the exit velocity,


[image: image257.wmf][

]

[

]

m/s

 

436

=

ú

ú

û

ù

ê

ê

ë

é

÷

÷

ø

ö

ç

ç

è

æ

-

×

+

=

-

+

=

-

+

=

5

.

0

2

2

2

5

.

0

2

1

2

1

5

.

0

2

1

2

1

2

kJ/kg

 

1

/s

m

 

1000

)K

279

K)(373

kJ/kg

 

005

.

1

(

2

m/s)

 

30

(

)

(

2

)

(

2

T

T

c

V

h

h

V

V

p


8-102 Air is expanded in an adiabatic nozzle by a polytropic process. The temperature and velocity at the exit are to be determined.

Assumptions 1 This is a steady-flow process since there is no change with time. 2 There is no heat transfer or shaft work associated with the process. 3 Air is an ideal gas with constant specific heats.
Properties The properties of air at room temperature are cp = 1.005 kJ/kg·K and k = 1.4 (Table A-2a).

Analysis For the polytropic process of an ideal gas, 
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, and the exit temperature is given by
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There is only one inlet and one exit, and thus 
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. We take nozzle as the system, which is a control volume since mass crosses the boundary. The energy balance for this steady-flow system can be expressed in the rate form as
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Solving for the exit velocity,
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8-103E Air is charged to an initially evacuated container from a supply line. The minimum temperature of the air in the container after it is filled is to be determined.

Assumptions 1 This is an unsteady process since the conditions within the device are changing during the process, but it can be analyzed as a uniform-flow process since the state of fluid at the inlet remains constant. 2 Air is an ideal gas with constant specific heats. 3 Kinetic and potential energies are negligible. 4 There are no work interactions involved. 5 The tank is well-insulated, and thus there is no heat transfer.
Properties The specific heat of air at room temperature is cp = 0.240 Btu/lbm·R (Table A-2Ea). 

Analysis We take the tank as the system, which is a control volume since mass crosses the boundary. Noting that the microscopic energies of flowing and nonflowing fluids are represented by enthalpy h and internal energy u, respectively, the mass and entropy balances for this uniform-flow system can be expressed as

Mass balance:   
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Entropy balance:
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Combining the two balances,
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The minimum temperature will result when the equal sign applies. Noting that P2 = Pi, we have
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Then,
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8-104 A container filled with liquid water is placed in a room and heat transfer takes place between the container and the air in the room until the thermal equilibrium is established. The final temperature, the amount of heat transfer between the water and the air, and the entropy generation are to be determined.

Assumptions 1 Kinetic and potential energy changes are negligible. 2 Air is an ideal gas with constant specific heats. 3 The room is well-sealed and there is no heat transfer from the room to the surroundings. 4 Sea level atmospheric pressure is assumed. P = 101.3 kPa.
Properties The properties of air at room temperature are R = 0.287 kPa.m3/kg.K, cp = 1.005 kJ/kg.K, cv = 0.718 kJ/kg.K. The specific heat of water at room temperature is cw = 4.18 kJ/kg.K (Tables A-2, A-3).

Analysis (a) The mass of the air in the room is
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An energy balance on the system that consists of the water in the container and the air in the room gives the final equilibrium temperature
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(b) The heat transfer to the air is
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(c) The entropy generation associated with this heat transfer process may be obtained by calculating total entropy change, which is the sum of the entropy changes of water and the air.
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8-105 Air is accelerated in an isentropic nozzle. The maximum velocity at the exit is to be determined.

Assumptions 1 Air is an ideal gas with constant specific heats. 2 The nozzle operates steadily.

Properties The properties of air at room temperature are cp = 1.005 kJ/kg.K, k = 1.4 (Table A-2a).

Analysis The exit temperature is determined from ideal gas isentropic relation to be,
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We take the nozzle as the system, which is a control volume. The energy balance for this steady-flow system can be expressed in the rate form as
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Therefore,
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8-106 An ideal gas is compressed in an isentropic compressor. 10% of gas is compressed to 400 kPa and 90% is compressed to 600 kPa. The compression process is to be sketched, and the exit temperatures at the two exits, and the mass flow rate into the compressor are to be determined.

Assumptions 1 The compressor operates steadily. 2 The process is reversible-adiabatic (isentropic)

Properties The properties of ideal gas are given to be cp = 1.1 kJ/kg.K and cv = 0.8 kJ/kg.K.

Analysis (b) The specific heat ratio of the gas is
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The exit temperatures are determined from ideal gas isentropic relations to be,
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(c) A mass balance on the control volume gives
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We take the compressor as the system, which is a control volume. The energy balance for this steady-flow system can be expressed in the rate form as
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Solving for the inlet mass flow rate, we obtain
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8-107 Air contained in a constant-volume tank s cooled to ambient temperature. The entropy changes of the air and the universe due to this process are to be determined and the process is to be sketched on a T-s diagram.

Assumptions 1 Air is an ideal gas with constant specific heats. 

Properties The specific heat of air at room temperature is             cv = 0.718 kJ/kg.K (Table A-2a).

Analysis (a) The entropy change of air is determined from 
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(b) An energy balance on the system gives
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The entropy change of the surroundings is
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The entropy change of universe due to this process is
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Reversible Steady-Flow Work

8-108C  The work associated with steady-flow devices is proportional to the specific volume of the gas. Cooling a gas during compression will reduce its specific volume, and thus the power consumed by the compressor. 

8-109C  Cooling the steam as it expands in a turbine will reduce its specific volume, and thus the work output of the turbine.  Therefore, this is not a good proposal.

8-110C  We would not support this proposal since the steady-flow work input to the pump is proportional to the specific volume of the liquid, and cooling will not affect the specific volume of a liquid significantly.

8-111 Air is compressed isothermally in a reversible steady-flow device. The work required is to be determined.

Assumptions 1 This is a steady-flow process since there is no change with time. 2 There is no heat transfer associated with the process. 3 Kinetic and potential energy changes are negligible. 4 Air is an ideal gas with constant specific heats.
Properties The gas constant of air is R = 0.06855 Btu/lbm·R (Table A-1E).

Analysis Substituting the ideal gas equation of state into the reversible steady-flow work expression gives
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8-112 Saturated water vapor is compressed in a reversible steady-flow device. The work required is to be determined.

Assumptions 1 This is a steady-flow process since there is no change with time. 2 There is no heat transfer associated with the process. 3 Kinetic and potential energy changes are negligible.
Analysis The properties of water at the inlet state are
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Noting that the specific volume remains constant, the reversible steady-flow work expression gives


[image: image292.wmf]kJ/kg

 

205.6

=

÷

ø

ö

ç

è

æ

×

=

-

=

=

ò

3

3

1

2

1

2

1

in

m

kPa

 

1

kJ

 

1

476.16)kPa

-

/kg)(1000

m

 

(0.39248

)

(

P

P

dP

w

v

v


8-113 The work produced for the process 1-3 shown in the figure is to be determined.
Assumptions  Kinetic and potential energy changes are negligible. 
Analysis The work integral represents the area to the left of the reversible process line. Then,
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8-114E The work produced for the process 1-2 shown in the figure is to be determined.
Assumptions  Kinetic and potential energy changes are negligible. 
Analysis The work integral represents the area to the left of the reversible process line. Then,
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8-115  Liquid water is to be pumped  by a 25-kW pump at a specified rate. The highest pressure the water can be pumped to is to be determined.

Assumptions 1 Liquid water is an incompressible substance. 2 Kinetic and potential energy changes are negligible. 3 The process is assumed to be reversible since we will determine the limiting case. 

Properties The specific volume of liquid water is given to be v1 = 0.001 m3/kg.

Analysis The highest pressure the liquid can have at the pump exit can be determined from the reversible steady-flow work relation for a liquid,

Thus,
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It yields
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8-116 A steam power plant operates between the pressure limits of 10 MPa and 20 kPa. The ratio of the turbine work to the pump work is to be determined. 

Assumptions 1 Liquid water is an incompressible substance. 2 Kinetic and potential energy changes are negligible. 3 The process is reversible. 4 The pump and the turbine are adiabatic.

Properties The specific volume of saturated liquid water at 20 kPa is v1 = vf @ 20 kPa = 0.001017 m3/kg (Table A-5).

Analysis  Both the compression and expansion processes are reversible and adiabatic, and thus isentropic,

s1 = s2 and s3 = s4.  Then the properties of the steam are
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Also, v1 = vf @ 20 kPa = 0.001017 m3/kg.

The work output to this isentropic turbine is determined from the steady-flow energy balance to be
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Substituting,


[image: image299.wmf]kJ/kg

 

2098.3

9

.

2608

2

.

4707

4

3

out

turb,

=

-

=

-

=

h

h

w


The pump work input is determined from the steady-flow work relation to be
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Thus,
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8-117 EES Problem 8-116 is reconsidered. The effect of the quality of the steam at the turbine exit on the net work output is to be investigated as the quality is varied from 0.5 to 1.0, and the net work output us to be plotted as a function of this quality.

Analysis The problem is solved using EES, and the results are tabulated and plotted below.  
"System: control volume for the pump and turbine"
"Property relation: Steam functions"
"Process: For Pump and Turbine: Steady state, steady flow, adiabatic, reversible or isentropic"
"Since we don't know the mass, we write the conservation of energy per unit mass."
"Conservation of mass: m_dot[1]= m_dot[2]"
"Knowns:"
WorkFluid$ = 'Steam_IAPWS'

P[1] = 20  [kPa]

x[1] = 0

P[2] = 10000 [kPa]

x[4] = 1.0

"Pump Analysis:"
T[1]=temperature(WorkFluid$,P=P[1],x=0)

v[1]=volume(workFluid$,P=P[1],x=0)

h[1]=enthalpy(WorkFluid$,P=P[1],x=0)

s[1]=entropy(WorkFluid$,P=P[1],x=0)

s[2] = s[1]

h[2]=enthalpy(WorkFluid$,P=P[2],s=s[2])

T[2]=temperature(WorkFluid$,P=P[2],s=s[2])

"The Volume function has the same form for an ideal gas as for a real fluid."
v[2]=volume(WorkFluid$,T=T[2],p=P[2])

"Conservation of Energy - SSSF energy balance for pump"
"       -- neglect the change in potential energy, no  heat transfer:"
h[1]+W_pump = h[2]

"Also the work of pump can be obtained from the incompressible fluid, steady-flow result:"
W_pump_incomp = v[1]*(P[2] - P[1])

"Conservation of Energy - SSSF energy balance for turbine -- neglecting the change in potential energy, no  heat transfer:"
P[4] = P[1]

P[3] = P[2]

h[4]=enthalpy(WorkFluid$,P=P[4],x=x[4])

s[4]=entropy(WorkFluid$,P=P[4],x=x[4])

T[4]=temperature(WorkFluid$,P=P[4],x=x[4])

s[3] = s[4]

h[3]=enthalpy(WorkFluid$,P=P[3],s=s[3])

T[3]=temperature(WorkFluid$,P=P[3],s=s[3])

h[3] = h[4] + W_turb

W_net_out  = W_turb - W_pump
	Wnet,out [kJ/kg]
	Wpump
[kJ/kg]
	Wpump,incomp [kJ/kg]
	Wturb
[kJ/kg]
	x4

	557.1
	10.13
	10.15
	567.3
	0.5

	734.7
	10.13
	10.15
	744.8
	0.6

	913.6
	10.13
	10.15
	923.7
	0.7

	1146
	10.13
	10.15
	1156
	0.8

	1516
	10.13
	10.15
	1527
	0.9

	2088
	10.13
	10.15
	2098
	1
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8-118 Liquid water is pumped  by a 70-kW pump to a specified pressure at a specified level. The highest possible mass flow rate of water is to be determined.

Assumptions 1 Liquid water is an incompressible substance. 2 Kinetic energy changes are negligible, but potential energy changes may be significant. 3 The process is assumed to be reversible since we will determine the limiting case. 

Properties The specific volume of liquid water is given to be                  v1 = 0.001 m3/kg.

Analysis The highest mass flow rate will be realized when the entire process is reversible.  Thus it is determined from the reversible steady-flow work relation for a liquid,

 Thus,
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It yields
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8-119E Helium gas is compressed from a specified state to a specified pressure at a specified rate. The power input to the compressor is to be determined for the cases of isentropic, polytropic, isothermal, and two-stage compression.

Assumptions 1 Helium is an ideal gas with constant specific heats. 2 The process is reversible. 3 Kinetic and potential energy changes are negligible. 

Properties The gas constant of helium is R = 2.6805 psia.ft3/lbm.R = 0.4961 Btu/lbm.R. The specific heat ratio of helium is k = 1.667 (Table A-2E).

Analysis  The mass flow rate of helium is
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(a)  Isentropic compression with k = 1.667:
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(b)  Polytropic compression with n = 1.2:
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(c)  Isothermal compression:
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(d) Ideal two-stage compression with intercooling (n = 1.2):  In this case, the pressure ratio across each stage is the same, and its value is determined from
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The compressor work across each stage is also the same, thus total compressor work is twice the compression work for a single stage:
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8-120E EES Problem 8-119E is reconsidered. The work of compression and entropy change of the helium is to be evaluated and plotted as functions of the polytropic exponent as it varies from 1 to 1.667.  

Analysis The problem is solved using EES, and the results are tabulated and plotted below.  
Procedure FuncPoly(m_dot,k, R, T1,P2,P1,n:W_dot_comp_polytropic,W_dot_comp_2stagePoly,Q_dot_Out_polytropic,Q_dot_Out_2stagePoly)

If n =1 then

T2=T1

W_dot_comp_polytropic= m_dot*R*(T1+460)*ln(P2/P1)*convert(Btu/s,hp) "[hp]"
W_dot_comp_2stagePoly = W_dot_comp_polytropic "[hp]"
Q_dot_Out_polytropic=W_dot_comp_polytropic*convert(hp,Btu/s) "[Btu/s]"
Q_dot_Out_2stagePoly = Q_dot_Out_polytropic*convert(hp,Btu/s) "[Btu/s]"
Else

C_P = k*R/(k-1) "[Btu/lbm-R]"
T2=(T1+460)*((P2/P1)^((n+1)/n)-460)"[F]"
W_dot_comp_polytropic = m_dot*n*R*(T1+460)/(n-1)*((P2/P1)^((n-1)/n) - 1)*convert(Btu/s,hp)"[hp]"
Q_dot_Out_polytropic=W_dot_comp_polytropic*convert(hp,Btu/s)+m_dot*C_P*(T1-T2)"[Btu/s]"
Px=(P1*P2)^0.5

T2x=(T1+460)*((Px/P1)^((n+1)/n)-460)"[F]"
W_dot_comp_2stagePoly = 2*m_dot*n*R*(T1+460)/(n-1)*((Px/P1)^((n-1)/n) - 1)*convert(Btu/s,hp)"[hp]"
Q_dot_Out_2stagePoly=W_dot_comp_2stagePoly*convert(hp,Btu/s)+2*m_dot*C_P*(T1-T2x)"[Btu/s]"
endif

END 

R=0.4961[Btu/lbm-R]

k=1.667

n=1.2

P1=14 [psia]

T1=70 [F]

P2=120 [psia]

V_dot = 5 [ft^3/s]

P1*V_dot=m_dot*R*(T1+460)*convert(Btu,psia-ft^3)

W_dot_comp_isentropic = m_dot*k*R*(T1+460)/(k-1)*((P2/P1)^((k-1)/k) - 1)*convert(Btu/s,hp)"[hp]"
Q_dot_Out_isentropic = 0"[Btu/s]"
Call FuncPoly(m_dot,k, R, T1,P2,P1,n:W_dot_comp_polytropic,W_dot_comp_2stagePoly,Q_dot_Out_polytropic,Q_dot_Out_2stagePoly)

W_dot_comp_isothermal= m_dot*R*(T1+460)*ln(P2/P1)*convert(Btu/s,hp)"[hp]"
Q_dot_Out_isothermal = W_dot_comp_isothermal*convert(hp,Btu/s)"[Btu/s]"
	n
	Wcomp2StagePoly [hp]
	Wcompisentropic [hp]
	Wcompisothermal [hp]
	Wcomppolytropic [hp]

	1
	39.37
	62.4
	39.37
	39.37

	1.1
	41.36
	62.4
	39.37
	43.48

	1.2
	43.12
	62.4
	39.37
	47.35

	1.3
	44.68
	62.4
	39.37
	50.97

	1.4
	46.09
	62.4
	39.37
	54.36

	1.5
	47.35
	62.4
	39.37
	57.54

	1.667
	49.19
	62.4
	39.37
	62.4
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8-121 Water mist is to be sprayed into the air stream in the compressor to cool the air as the water evaporates and to reduce the compression power. The reduction in the exit temperature of the compressed air and the compressor power saved are to be determined. 

Assumptions 1 Air is an ideal gas with variable specific heats. 2 The process is reversible. 3 Kinetic and potential energy changes are negligible. 3 Air is compressed isentropically. 4 Water vaporizes completely before leaving the compressor.  4 Air properties can be used for the air-vapor mixture.

Properties The gas constant of air is R = 0.287 kJ/kg.K (Table A-1). The specific heat ratio of air is k = 1.4. The inlet enthalpies of water and air are (Tables A-4 and A-17)


hw1 = hf@20(C = 83.29 kJ/kg , hfg@20(C = 2453.9 kJ/kg and ha1 = h@300 K =300.19 kJ/kg

Analysis  In the case of isentropic operation (thus no cooling or water spray), the exit temperature and the power input to the compressor are
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When water is sprayed, we first need to check the accuracy of the assumption that the water vaporizes completely in the compressor. In the limiting case, the compression will be isothermal at the compressor inlet temperature, and the water will be a saturated vapor. To avoid the complexity of dealing with two fluid streams and a gas mixture, we disregard water in the air stream (other than the mass flow rate), and assume air is cooled by an amount equal to the enthalpy change of water.

The rate of heat absorption of water as it evaporates at the inlet temperature completely is
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The minimum power input to the compressor is
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This corresponds to maximum cooling from the air since, at constant temperature, (h = 0 and thus 
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, which is close to 490.8 kW. Therefore, the assumption that all the water vaporizes is approximately valid. Then the reduction in required power input due to water spray becomes
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Discussion (can be ignored): At constant temperature, (h = 0 and thus 
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 corresponds to maximum cooling from the air, which is less than 490.8 kW. Therefore, the assumption that all the water vaporizes is only roughly valid. As an alternative, we can assume the compression process to be polytropic and the water to be a saturated vapor at the compressor exit temperature, and disregard the remaining liquid. But in this case there is not a unique solution, and we will have to select either the amount of water or the exit temperature or the polytropic exponent to obtain a solution. Of course we can also tabulate the results for different cases, and then make a selection.

Sample Analysis: We take the compressor exit temperature to be T2 = 200(C = 473 K. Then,  


hw2 = hg@200(C = 2792.0 kJ/kg and ha2 = h@473 K = 475.3 kJ/kg

Then,  
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Energy balance:
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Noting that this heat is absorbed by water, the rate at which water evaporates in the compressor becomes
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Then the reductions in the exit temperature and compressor power input become
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Note that selecting a different compressor exit temperature T2 will result in different values.

8-122 A water-injected compressor is used in a gas turbine power plant. It is claimed that the power output of a gas turbine will increase when water is injected into the compressor because of the increase in the mass flow rate of the gas (air + water vapor) through the turbine. This, however, is not necessarily right since the compressed air in this case enters the combustor at a low temperature, and thus it absorbs much more heat. In fact, the cooling effect will most likely dominate and cause the cyclic efficiency to drop.

Isentropic Efficiencies of Steady-Flow Devices

8-123C  The ideal process for all three devices is the reversible adiabatic (i.e., isentropic) process.  The adiabatic efficiencies of these devices are defined as

   
[image: image325.wmf]energy

 

kinetic

exit 

 

c

insentropi

energy

kinetic

exit 

 

actual

 

and

 

,

input

work 

 

actual

input

work 

 

c

insentropi

 

,

output

work 

 

c

insentropi

output

work 

 

actual

=

=

=

N

C

T

h

h

h


8-124C  No, because the isentropic process is not the model or ideal process for compressors that are cooled intentionally.

8-125C  Yes.  Because the entropy of the fluid must increase during an actual adiabatic process as a result of irreversibilities.  Therefore, the actual exit state has to be on the right-hand side of the isentropic exit state

8-126 Saturated steam is compressed in an adiabatic process with an isentropic efficiency of 0.90. The work required is to be determined. 

Assumptions 1 Kinetic and potential energy changes are negligible. 2 The device is adiabatic and thus heat transfer is negligible.
Analysis  We take the steam as the system. This is a closed system since no mass enters or leaves. The energy balance for this stationary closed system can be expressed as
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From the steam tables (Tables A-5 and A-6),
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The work input during the isentropic process is
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The actual work input is then
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8-127E R-134a is expanded in an adiabatic process with an isentropic efficiency of 0.95. The final volume is to be determined. 

Assumptions 1 Kinetic and potential energy changes are negligible. 2 The device is adiabatic and thus heat transfer is negligible.
Analysis  We take the R-134a as the system. This is a closed system since no mass enters or leaves. The energy balance for this stationary closed system can be expressed as
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From the R-134a tables (Tables A-11E through A-13E),
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The actual work input is
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The actual internal energy at the end of the expansion process is
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The specific volume at the final state is (Table A-12E)
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The final volume is then
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8-128 Steam is expanded in an adiabatic turbine with an isentropic efficiency of 0.92. The power output of the turbine is to be determined. 

Assumptions 1 This is a steady-flow process since there is no change with time. 2 Kinetic and potential energy changes are negligible. 3 The device is adiabatic and thus heat transfer is negligible.

Analysis There is only one inlet and one exit, and thus 
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. We take the actual turbine as the system, which is a control volume since mass crosses the boundary. The energy balance for this steady-flow system can be expressed in the rate form as
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From the steam tables (Tables A-4 through A-6),


[image: image339.wmf]kJ/kg

 

2335.7

)

3

.

2335

)(

8763

.

0

(

289.27

8763

.

0

8234

.

6

9441

.

0

9235

.

6

  

kPa

 

30

K

kJ/kg

 

6.9235

kJ/kg

 

3231.7

  

C

00

4

MPa

 

3

2

2

2

2

1

2

2

1

1

1

1

=

+

=

+

=

=

-

=

-

=

þ

ý

ü

=

=

×

=

=

þ

ý

ü

°

=

=

fg

s

f

s

fg

f

s

s

s

s

h

x

h

h

s

s

s

x

s

s

P

s

h

T

P


The actual power output may be determined by multiplying the isentropic power output with the isentropic efficiency. Then,
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8-129 Steam is expanded in an adiabatic turbine with an isentropic efficiency of 0.90. The power output of the turbine is to be determined. 

Assumptions 1 This is a steady-flow process since there is no change with time. 2 Kinetic and potential energy changes are negligible. 3 The device is adiabatic and thus heat transfer is negligible.

Analysis There is only one inlet and one exit, and thus 
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. We take the actual turbine as the system, which is a control volume since mass crosses the boundary. The energy balance for this steady-flow system can be expressed in the rate form as
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From the steam tables (Tables A-4 through A-6),
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The actual power output may be determined by multiplying the isentropic power output with the isentropic efficiency. Then,
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8-130 Argon gas is compressed by an adiabatic compressor. The isentropic efficiency of the compressor is to be determined.

Assumptions 1 This is a steady-flow process since there is no change with time. 2 Kinetic and potential energy changes are negligible. 3 The device is adiabatic and thus heat transfer is negligible. 4 Argon is an ideal gas with constant specific heats.
Properties The specific heat ratio of argon is k = 1.667 (Table A-2).

Analysis The isentropic exit temperature is 
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From the isentropic efficiency relation,
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8-131 R-134a is compressed by an adiabatic compressor. The isentropic efficiency of the compressor is to be determined.

Assumptions 1 This is a steady-flow process since there is no change with time. 2 Kinetic and potential energy changes are negligible. 3 The device is adiabatic and thus heat transfer is negligible. 
Analysis From the R-134a tables (Tables A-11 through A-13),
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From the isentropic efficiency relation,


[image: image349.wmf]37.2%

=

=

-

-

=

-

-

=

=

372

.

0

45

.

250

28

.

290

45

.

250

25

.

265

1

2

1

2

h

h

h

h

w

w

a

s

a

s

C

h


8-132 Steam enters an adiabatic turbine at a specified state, and leaves at a specified state. The mass flow rate of the steam and the isentropic efficiency are to be determined. 

Assumptions 1 This is a steady-flow process since there is no change with time. 2 Potential energy changes are negligible. 3 The device is adiabatic and thus heat transfer is negligible.
Analysis (a)  From the steam tables (Tables A-4 and A-6),
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There is only one inlet and one exit, and thus 
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. We take the actual turbine as the system, which is a control volume since mass crosses the boundary. The energy balance for this steady-flow system can be expressed in the rate form as
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Substituting, the mass flow rate of the steam is determined to be 
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(b)  The isentropic exit enthalpy of the steam and the power output of the isentropic turbine are
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and
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Then the isentropic efficiency of the turbine becomes
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8-133 Argon enters an adiabatic turbine at a specified state with a specified mass flow rate, and leaves at a specified pressure. The isentropic efficiency of the turbine is to be determined. 

Assumptions 1 This is a steady-flow process since there is no change with time. 2 Kinetic and potential energy changes are negligible. 3 The device is adiabatic and thus heat transfer is negligible. 4 Argon is an ideal gas with constant specific heats.
Properties The specific heat ratio of argon is k = 1.667. The constant pressure specific heat of argon is cp = 0.5203 kJ/kg.K (Table A-2).

Analysis There is only one inlet and one exit, and thus 
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. We take the isentropic turbine as the system, which is a control volume since mass crosses the boundary. The energy balance for this steady-flow system can be expressed in the rate form as
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From the isentropic relations,
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Then the power output of the isentropic turbine becomes
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Then the isentropic efficiency of the turbine is determined from
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8-134E Combustion gases enter an adiabatic gas turbine with an isentropic efficiency of 82% at a specified state, and leave at a specified pressure. The work output of the turbine is to be determined. 

Assumptions 1 This is a steady-flow process since there is no change with time. 2 Kinetic and potential energy changes are negligible. 3 The device is adiabatic and thus heat transfer is negligible. 4 Combustion gases can be treated as air that is an ideal gas with variable specific heats.
Analysis  From the air table and isentropic relations,
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There is only one inlet and one exit, and thus 
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. We take the actual turbine as the system, which is a control volume since mass crosses the boundary. The energy balance for this steady-flow system can be expressed as



[image: image366.wmf])

(

0)

Δpe

Δke

  

(since

     

2

1

out

a,

2

out

a,

1

out

in

h

h

m

W

Q

h

m

W

h

m

E

E

-

=

@

@

@

+

=

=

&

&

&

&

&

&

&

&


Noting that wa = (Tws, the work output of the turbine per unit mass  is determined from 
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8-135 CD EES  Refrigerant-134a enters an adiabatic compressor with an isentropic efficiency of 0.80 at a specified state with a specified volume flow rate, and leaves at a specified pressure. The compressor exit temperature and power input to the compressor are to be determined. 

Assumptions 1 This is a steady-flow process since there is no change with time. 2 Kinetic and potential energy changes are negligible. 3 The device is adiabatic and thus heat transfer is negligible.
Analysis (a) From the refrigerant tables (Tables A-11E through A-13E),
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From the isentropic efficiency relation,

Thus,
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(b)  The mass flow rate of the refrigerant is determined from
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There is only one inlet and one exit, and thus 
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. We take the actual compressor as the system, which is a control volume since mass crosses the boundary. The energy balance for this steady-flow system can be expressed as
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Substituting, the power input to the compressor becomes,
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8-136 EES Problem 8-135 is reconsidered. The problem is to be solved by considering the kinetic energy and by assuming an inlet-to-exit area ratio of 1.5 for the compressor when the compressor exit pipe inside diameter is 2 cm.

Analysis The problem is solved using EES, and the solution is given below.  
"Input Data from diagram window"
{P[1] = 120 "kPa"

P[2] = 1000 "kPa"

Vol_dot_1 = 0.3 "m^3/min"

Eta_c = 0.80 "Compressor adiabatic efficiency"

A_ratio = 1.5

d_2 = 2/100 "m"}
"System: Control volume containing the compressor, see the diagram window.

Property Relation:  Use the real fluid properties for R134a.

Process: Steady-state, steady-flow, adiabatic process."
Fluid$='R134a'

"Property Data for state 1"
T[1]=temperature(Fluid$,P=P[1],x=1)"Real fluid equ. at the sat. vapor state"
h[1]=enthalpy(Fluid$, P=P[1], x=1)"Real fluid equ. at the sat. vapor state"
s[1]=entropy(Fluid$, P=P[1], x=1)"Real fluid equ. at the sat. vapor state"
v[1]=volume(Fluid$, P=P[1], x=1)"Real fluid equ. at the sat. vapor state"
"Property Data for state 2"
s_s[1]=s[1]; T_s[1]=T[1] "needed for plot"
s_s[2]=s[1] "for the ideal, isentropic process across the compressor"
h_s[2]=ENTHALPY(Fluid$, P=P[2], s=s_s[2])"Enthalpy 2 at the isentropic state 2s and pressure P[2]"
T_s[2]=Temperature(Fluid$, P=P[2], s=s_s[2])"Temperature of ideal state - needed only for plot."
"Steady-state, steady-flow conservation of mass"
 m_dot_1 = m_dot_2

m_dot_1 = Vol_dot_1/(v[1]*60)

Vol_dot_1/v[1]=Vol_dot_2/v[2]

Vel[2]=Vol_dot_2/(A[2]*60)

A[2] = pi*(d_2)^2/4

A_ratio*Vel[1]/v[1] = Vel[2]/v[2] "Mass flow rate: = A*Vel/v, A_ratio = A[1]/A[2]"
A_ratio=A[1]/A[2]

"Steady-state, steady-flow conservation of energy, adiabatic compressor, see diagram window"
m_dot_1*(h[1]+(Vel[1])^2/(2*1000)) + W_dot_c= m_dot_2*(h[2]+(Vel[2])^2/(2*1000))

"Definition of the compressor adiabatic efficiency, Eta_c=W_isen/W_act"
Eta_c = (h_s[2]-h[1])/(h[2]-h[1])

"Knowing h[2], the other properties at state 2 can be found."
v[2]=volume(Fluid$, P=P[2], h=h[2])"v[2] is found at the actual state 2, knowing P and h."
T[2]=temperature(Fluid$, P=P[2],h=h[2])"Real fluid equ. for T at the known outlet h and P."
s[2]=entropy(Fluid$, P=P[2], h=h[2])   "Real fluid equ. at the known outlet h and P."
T_exit=T[2]

"Neglecting the kinetic energies, the work is:"
m_dot_1*h[1] + W_dot_c_noke= m_dot_2*h[2]

SOLUTION
	A[1]=0.0004712 [m^2]

A[2]=0.0003142 [m^2]

A_ratio=1.5 

d_2=0.02 [m]

Eta_c=0.8 

Fluid$='R134a'

h[1]=237 [kJ/kg]

h[2]=292.3 [kJ/kg]

h_s[2]=281.2 [kJ/kg]

m_dot_1=0.03084 [kg/s]

m_dot_2=0.03084 [kg/s]

P[1]=120.0 [kPa]

P[2]=1000.0 [kPa]

s[1]=0.9478 [kJ/kg-K]

s[2]=0.9816 [kJ/kg-K]
	s_s[1]=0.9478 [kJ/kg-K]

s_s[2]=0.9478 [kJ/kg-K]

T[1]=-22.32 [C]

T[2]=58.94 [C]

T_exit=58.94 [C]

T_s[1]=-22.32 [C]

T_s[2]=48.58 [C]

Vol_dot_1=0.3 [m^3 /min]

Vol_dot_2=0.04244 [m^3 /min]

v[1]=0.1621 [m^3/kg]

v[2]=0.02294 [m^3/kg]

Vel[1]=10.61 [m/s]

Vel[2]=2.252 [m/s]

W_dot_c=1.704 [kW]

W_dot_c_noke=1.706 [kW]
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8-137 Air enters an adiabatic compressor with an isentropic efficiency of 84% at a specified state, and leaves at a specified temperature. The exit pressure of air and the power input to the compressor are to be determined.

Assumptions 1 This is a steady-flow process since there is no change with time. 2 Kinetic and potential energy changes are negligible. 3 The device is adiabatic and thus heat transfer is negligible. 4 Air is an ideal gas with variable specific heats.
Properties The gas constant of air is R = 0.287 kPa.m3/kg.K (Table A-1)

Analysis  (a) From the air table (Table A-21),
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From the isentropic efficiency relation  
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Then from the isentropic relation ,



[image: image379.wmf](

)

kPa

646

 

kPa

 

100

1.2311

7.951

1

2

1

2

1

2

1

2

=

÷

ø

ö

ç

è

æ

=

÷

÷

ø

ö

ç

ç

è

æ

=

¾

®

¾

=

P

P

P

P

P

P

P

P

r

r

r

r


(b) There is only one inlet and one exit, and thus 
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. We take the actual compressor as the system, which is a control volume since mass crosses the boundary. The energy balance for this steady-flow system can be expressed as
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where
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Then the power input to the compressor is determined to be
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8-138 Air is compressed by an adiabatic compressor from a specified state to another specified state. The isentropic efficiency of the compressor and the exit temperature of air for the isentropic case are to be determined. 

Assumptions 1 This is a steady-flow process since there is no change with time. 2 Kinetic and potential energy changes are negligible. 3 The device is adiabatic and thus heat transfer is negligible. 4 Air is an ideal gas with variable specific heats.
Analysis  (a) From the air table (Table A-21),
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From the isentropic relation,
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Then the isentropic efficiency becomes





(b)  If the process were isentropic, the exit temperature would be
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8-139E Argon enters an adiabatic compressor with an isentropic efficiency of 80% at a specified state, and leaves at a specified pressure. The exit temperature of argon and the work input to the compressor are to be determined. 

Assumptions 1 This is a steady-flow process since there is no change with time. 2 Potential energy changes are negligible. 3 The device is adiabatic and thus heat transfer is negligible. 4 Argon is an ideal gas with constant specific heats.
Properties The specific heat ratio of argon is             k = 1.667. The constant pressure specific heat of argon is cp = 0.1253 Btu/lbm.R (Table A-2E).

Analysis (a) The isentropic exit temperature T2s is determined from
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The actual kinetic energy change during this process is
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The effect of kinetic energy on isentropic efficiency is very small. Therefore, we can take the kinetic energy changes for the actual and isentropic cases to be same in efficiency calculations. From the isentropic efficiency relation, including the effect of kinetic energy,
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It yields


T2a  =  1592 R
(b) There is only one inlet and one exit, and thus 
[image: image391.wmf]&

&

&

m

m

m

1

2

=

=

. We take the actual compressor as the system, which is a control volume since mass crosses the boundary. The energy balance for this steady-flow system can be expressed as
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Substituting, the work input to the compressor is determined to be
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8-140E Air is accelerated in a 90% efficient adiabatic nozzle from low velocity to a specified velocity. The exit temperature and pressure of the air are to be determined. 

Assumptions 1 This is a steady-flow process since there is no change with time. 2 Potential energy changes are negligible. 3 The device is adiabatic and thus heat transfer is negligible. 4 Air is an ideal gas with variable specific heats.
Analysis From the air table (Table A-21E),
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There is only one inlet and one exit, and thus 
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. We take the nozzle as the system, which is a control volume since mass crosses the boundary. The energy balance for this steady-flow system can be expressed as
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Substituting, the exit temperature of air is determined to be
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From the air table we read 

T2a  =  1431.3 R
From the isentropic efficiency relation  
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Then the exit pressure is determined from the isentropic relation to be
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8-141E EES Problem 8-140E is reconsidered. The effect of varying the nozzle isentropic efficiency from 0.8 to 1.0 on the exit temperature and pressure of the air is to be investigated, and the results are to be plotted.

Analysis The problem is solved using EES, and the results are tabulated and plotted below.  
"Knowns:"
WorkFluid$ = 'Air'

P[1] = 60  [psia]

T[1] = 1020 [F]

Vel[2] = 800 [ft/s]

Vel[1] = 0 [ft/s]

eta_nozzle = 0.9

"Conservation of Energy - SSSF energy balance for turbine -- neglecting the change in potential energy, no  heat transfer:"
h[1]=enthalpy(WorkFluid$,T=T[1])

s[1]=entropy(WorkFluid$,P=P[1],T=T[1])

T_s[1] = T[1]

s[2] =s[1]

s_s[2] = s[1]

h_s[2]=enthalpy(WorkFluid$,T=T_s[2])

T_s[2]=temperature(WorkFluid$,P=P[2],s=s_s[2])

eta_nozzle = ke[2]/ke_s[2]

ke[1] = Vel[1]^2/2

ke[2]=Vel[2]^2/2 

h[1]+ke[1]*convert(ft^2/s^2,Btu/lbm) = h[2] + ke[2]*convert(ft^2/s^2,Btu/lbm)

h[1] +ke[1]*convert(ft^2/s^2,Btu/lbm) = h_s[2] + ke_s[2]*convert(ft^2/s^2,Btu/lbm)

T[2]=temperature(WorkFluid$,h=h[2])

P_2_answer = P[2]

T_2_answer = T[2]

	(nozzle
	P2
[psia
	T2
[F
	Ts,2
[F]

	0.8
	51.09
	971.4
	959.2

	0.85
	51.58
	971.4
	962.8

	0.9
	52.03
	971.4
	966

	0.95
	52.42
	971.4
	968.8

	1
	52.79
	971.4
	971.4


8-142 Air is expanded in an adiabatic nozzle with an isentropic efficiency of 0.96. The air velocity at the exit is to be determined.

Assumptions 1 This is a steady-flow process since there is no change with time. 2 There is no heat transfer or shaft work associated with the process. 3 Air is an ideal gas with constant specific heats.
Properties The properties of air at room temperature are cp = 1.005 kJ/kg·K and k = 1.4 (Table A-2a).

Analysis For the isentropic process of an ideal gas, the exit temperature is determined from
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There is only one inlet and one exit, and thus 
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. We take nozzle as the system, which is a control volume since mass crosses the boundary. The energy balance for this steady-flow system can be expressed in the rate form as
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The kinetic energy change for the isentropic case is
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The kinetic energy change for the actual process is
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Substituting into the energy balance and solving for the exit velocity gives
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8-143E Air is decelerated in an adiabatic diffuser with an isentropic efficiency of 0.82. The air velocity at the exit is to be determined.

Assumptions 1 This is a steady-flow process since there is no change with time. 2 There is no heat transfer or shaft work associated with the process. 3 Air is an ideal gas with constant specific heats.
Properties The properties of air at room temperature are cp = 0.240 Btu/lbm·R and k = 1.4 (Table A-2Ea).

Analysis For the isentropic process of an ideal gas, the exit temperature is determined from
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There is only one inlet and one exit, and thus 
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. We take nozzle as the system, which is a control volume since mass crosses the boundary. The energy balance for this steady-flow system can be expressed in the rate form as
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The kinetic energy change for the isentropic case is
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The kinetic energy change for the actual process is
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Substituting into the energy balance and solving for the exit velocity gives
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Entropy Balance

8-144 Heat is lost from Refrigerant-134a as it is throttled. The exit temperature of the refrigerant and the entropy generation are to be determined.

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 
Analysis The properties of the refrigerant at the inlet of the device are (Table A-13)
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The enthalpy of the refrigerant at the exit of the device is
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Now, the properties at the exit state may be obtained from the R-134a tables



[image: image419.wmf]kJ/kg.K

 

38884

.

0

kJ/kg

 

06

.

100

kPa

 

0

20

2

2

2

2

=

°

-

=

þ

ý

ü

=

=

s

T

h

P

C

10.09


The entropy generation associated with this process may be obtained by adding the entropy change of R-134a as it flows in the device and the entropy change of the surroundings.
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8-145 Liquid water is withdrawn from a rigid tank that initially contains saturated water mixture until no liquid is left in the tank. The quality of steam in the tank at the initial state, the amount of mass that has escaped, and the entropy generation during this process are to be determined.

Assumptions 1 Kinetic and potential energy changes are zero. 2 There are no work interactions.
Analysis (a) The properties of the steam in the tank at the final state and the properties of exiting steam are (Tables A-4 through A-6)
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The relations for the volume of the tank and the final mass in the tank are
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The mass, energy, and entropy balances may be written as
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Substituting,
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(3)

Eq. (2) may be solved by a trial-error approach by trying different qualities at the inlet state. Or, we can use EES to solve the equations to find


x1 = 0.8666
Other properties at the initial state are
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Substituting into Eqs (1) and (3),

(b)
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(c)
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8-146 Each member of a family of four take a 5-min shower every day. The amount of entropy generated by this family per year is to be determined.   

Assumptions 1 Steady operating conditions exist. 2 The kinetic and potential energies are negligible.  3 Heat losses from the pipes and the mixing section are negligible and thus 

 4 Showers operate at maximum flow conditions during the entire shower. 5 Each member of the household takes a 5-min shower every day. 6 Water is an incompressible substance with constant properties at room temperature. 7 The efficiency of the electric water heater is 100%.

Properties  The density and specific heat of water at room temperature are ( = 1 kg/L and c = 4.18 kJ/kg.(C (Table A-3). 

Analysis The mass flow rate of water at the shower head is 
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The mass balance for the mixing chamber can be expressed in the rate form as 
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where the subscript 1 denotes the cold water stream, 2 the hot water stream, and 3 the mixture.

The rate of entropy generation during this process can be determined by applying the rate form of the entropy balance on a system that includes the electric water heater and the mixing chamber (the T-elbow). Noting that there is no entropy transfer associated with work transfer (electricity) and there is no heat transfer,   the entropy balance for this steady-flow system can be expressed as
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Noting from mass balance that 
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 and  s2 = s1 since hot water enters the system at the same temperature as the cold water, the rate of entropy generation is determined to be
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Noting that 4 people take a 5-min shower every day, the amount of entropy generated per year is
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Discussion The value above represents the entropy generated within the water heater and the T-elbow in the absence of any heat losses. It does not include the entropy generated as the shower water at 42(C is discarded  or cooled to the outdoor temperature. Also, an entropy balance on the mixing chamber alone (hot water entering at 55(C instead of 15(C) will exclude the entropy generated within the water heater.

8-147  Steam is condensed by cooling water in the condenser of a power plant. The rate of condensation of steam and the rate of entropy generation are to be determined.

Assumptions 1 Steady operating conditions exist. 2 The heat exchanger is well-insulated so that heat loss to the surroundings is negligible and thus heat transfer from the hot fluid is equal to the heat transfer to the cold fluid. 3 Changes in the kinetic and potential energies of fluid streams are negligible. 4 Fluid properties are constant.

Properties The enthalpy and entropy of vaporization of water at 60(C are hfg =2357.7 kJ/kg and sfg = 7.0769 kJ/kg.K  (Table A-4). The specific heat of water at room temperature is  cp = 4.18 kJ/kg.(C (Table A-3).  

Analysis (a) We take the cold water tubes as the system, which is a control volume. The energy balance for this steady-flow system can be expressed in the rate form as

   
[image: image440.wmf])

(

0)

pe

ke

  

(since

   

0

1

2

in

2

1

in

out

in

energies

 

etc.

 

potential,

         

kinetic,

 

internal,

in 

 

change

 

of

 

Rate

(steady)

  

0

system

mass

 

and

 

 work,

heat,

by 

 

nsfer

energy tra

net 

 

of

 

Rate

out

in

T

T

c

m

Q

h

m

h

m

Q

E

E

E

E

E

p

-

=

@

D

@

D

=

+

=

=

D

=

-

&

&

&

&

&

&

&

4

4

3

4

4

2

1

&

4

3

4

2

1

&

&

ä


Then  the heat transfer rate to the cooling water in the condenser becomes
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 The rate of condensation of steam is determined to be 
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(b) The rate of entropy generation within the condenser during this process can be determined by applying the rate form of the entropy balance on the entire condenser. Noting that the condenser is well-insulated and thus heat transfer is negligible, the entropy balance for this steady-flow system can be expressed as 
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Noting that water is an incompressible substance and steam changes from saturated vapor to saturated liquid, the rate of entropy generation is determined to be
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8-148 Cold water is heated by hot water in a heat exchanger. The rate of heat transfer and the rate of entropy generation within the heat exchanger are to be determined.

Assumptions 1 Steady operating conditions exist. 2 The heat exchanger is well-insulated so that heat loss to the surroundings is negligible and thus heat transfer from the hot fluid is equal to the heat transfer to the cold fluid. 3 Changes in the kinetic and potential energies of fluid streams are negligible.  4 Fluid properties are constant. 
Properties The specific heats of cold and hot water are given to be 4.18 and 4.19 kJ/kg.(C, respectively.

Analysis We take the cold water tubes as the system, which is a control volume. The energy balance for this steady-flow system can be expressed in the rate form as
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Then the rate of heat transfer to the cold water in this heat exchanger becomes
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Noting that heat gain by the cold water is equal to the heat loss by the hot water, the outlet temperature of the hot water is determined to be
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(b) The rate of entropy generation within the heat exchanger is determined by applying the rate form of the entropy balance on the entire heat exchanger: 
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Noting that both fluid streams are liquids (incompressible substances), the rate of entropy generation is determined to be
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8-149 Air is preheated by hot exhaust gases in a cross-flow heat exchanger. The rate of heat transfer, the outlet temperature of the air, and the rate of entropy generation are to be determined.

Assumptions 1 Steady operating conditions exist. 2 The heat exchanger is well-insulated so that heat loss to the surroundings is negligible and thus heat transfer from the hot fluid is equal to the heat transfer to the cold fluid. 3 Changes in the kinetic and potential energies of fluid streams are negligible.  4 Fluid properties are constant.
Properties The specific heats of air and combustion gases are given to be 1.005 and 1.10 kJ/kg.(C, respectively. The gas constant of air is R = 0.287 kJ/kg.K (Table A-1).

Analysis We take the exhaust pipes as the system, which is a control volume. The energy balance for this steady-flow system can be expressed in the rate form as
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Then the rate of heat transfer from the exhaust gases becomes
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The mass flow rate of air is
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Noting that heat loss by the exhaust gases is equal to the heat gain by the air, the outlet temperature of the air becomes
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The rate of entropy generation within the heat exchanger is determined by applying the rate form of the entropy balance on the entire heat exchanger: 
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Then the rate of entropy generation is determined to be
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8-150 Water is heated by hot oil in a heat exchanger. The outlet temperature of the oil and the rate of entropy generation within the heat exchanger are to be determined.

Assumptions 1 Steady operating conditions exist. 2 The heat exchanger is well-insulated so that heat loss to the surroundings is negligible and thus heat transfer from the hot fluid is equal to the heat transfer to the cold fluid. 3 Changes in the kinetic and potential energies of fluid streams are negligible.  4 Fluid properties are constant.
Properties The specific heats of  water and oil are given to be 4.18 and 2.3 kJ/kg.(C, respectively.

Analysis (a) We take the cold water tubes as the system, which is a control volume. The energy balance for this steady-flow system can be expressed in the rate form as
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Then the rate of heat transfer to the cold water in this heat exchanger becomes
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Noting that heat gain by the water is equal to the heat loss by the oil, the outlet temperature of the hot oil is determined from
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(b) The rate of entropy generation within the heat exchanger is determined by applying the rate form of the entropy balance on the entire heat exchanger: 



[image: image459.wmf]{

)

(

)

(

 

0

)

0

 

(since

   

0

3

4

oil

1

2

water

gen

gen

4

oil

2

water

3

oil

1

water

gen

4

3

2

2

3

3

1

1

entropy

 

of

   

change

 

of

 

Rate

(steady)

 

0

system

generation

    

entropy

 

of

 

Rate

gen

mass

 

and

heat 

by 

      

ansfer

entropy tr

net 

 

of

 

Rate

out

in

s

s

m

s

s

m

S

S

s

m

s

m

s

m

s

m

Q

S

s

m

s

m

s

m

s

m

S

S

S

S

-

+

-

=

=

+

-

-

+

=

=

+

-

-

+

D

=

+

-

&

&

&

&

&

&

&

&

&

&

&

&

&

4

4

3

4

4

2

1

&

&

4

3

4

2

1

&

&

Ã


Noting that both fluid streams are liquids (incompressible substances), the rate of entropy generation is determined to be
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8-151E Refrigerant-134a is expanded adiabatically from a specified state to another. The entropy generation is to be determined.

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 
Analysis The rate of entropy generation within the expansion device during this process can be determined by applying the rate form of the entropy balance on the system. Noting that the system is adiabatic and thus there is no heat transfer, the entropy balance for this steady-flow system can be expressed as 
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The properties of the refrigerant at the inlet and exit states are (Tables A-11E through A-13E)
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Substituting,
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8-152 In an ice-making plant, water is frozen by evaporating saturated R-134a liquid. The rate of entropy generation is to be determined.

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible.
Analysis We take the control volume formed by the R-134a evaporator with a single inlet and single exit as the system. The rate of entropy generation within this evaporator during this process can be determined by applying the rate form of the entropy balance on the system. The entropy balance for this steady-flow system can be expressed as 
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The properties of the refrigerant are (Table A-11)
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The rate of that must be removed from the water in order to freeze it at a rate of 4000 kg/h is
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where the heat of fusion of water at 1 atm is 333.7 kJ/kg. The mass flow rate of R-134a is
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Substituting,
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8-153 Air is heated by steam in a heat exchanger. The rate of entropy generation associated with this process is to be determined.

Assumptions 1 Steady operating conditions exist. 2 The heat exchanger is well-insulated so that heat loss to the surroundings is negligible and thus heat transfer from the hot fluid is equal to the heat transfer to the cold fluid. 3 Changes in the kinetic and potential energies of fluid streams are negligible.  4 Air is an ideal gas with constant specific heats.
Properties The specific heat of air at room temperature is cp = 1.005 kJ/kg((C (Table A-2).

Analysis  The rate of entropy generation within the heat exchanger is determined by applying the rate form of the entropy balance on the entire heat exchanger: 
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The properties of the steam at the inlet and exit states are
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(Table A-4)
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(Table A-4)

From an energy balance, the heat given up by steam is equal to the heat picked up by the air. Then,
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Substituting into the entropy balance relation,
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Note that the pressure of air remains unchanged as it flows in the heat exchanger. This is why the pressure term is not included in the entropy change expression of air. 
8-154 Oxygen is cooled as it flows in an insulated pipe. The rate of entropy generation in the pipe is to be determined.

Assumptions 1 Steady operating conditions exist. 2 The pipe is well-insulated so that heat loss to the surroundings is negligible. 3 Changes in the kinetic and potential energies are negligible.  4 Oxygen is an ideal gas with constant specific heats.
Properties The properties of oxygen at room temperature are R = 0.2598 kJ/kg(K,  cp = 0.918 kJ/kg(K (Table A-2a).

Analysis  The rate of entropy generation in the pipe is determined by applying the rate form of the entropy balance on the pipe: 
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The specific volume of oxygen at the inlet and the mass flow rate are
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Substituting into the entropy balance relation,
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8-155 Nitrogen is compressed by an adiabatic compressor. The entropy generation for this process is to be determined.

Assumptions 1 Steady operating conditions exist. 2 The compressor is well-insulated so that heat loss to the surroundings is negligible. 3 Changes in the kinetic and potential energies are negligible.  4 Nitrogen is an ideal gas with constant specific heats.
Properties The specific heat of nitrogen at the average temperature of (17+227)/2=122(C = 395 K is cp = 1.044 kJ/kg(K (Table A-2b).

Analysis  The rate of entropy generation in the pipe is determined by applying the rate form of the entropy balance on the compressor: 
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Substituting per unit mass of the oxygen,
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8-156E Steam is condensed by cooling water in a condenser. The rate of heat transfer and the rate of entropy generation within the heat exchanger are to be determined.  

Assumptions 1 Steady operating conditions exist. 2 The heat exchanger is well-insulated so that heat loss to the surroundings is negligible and thus heat transfer from the hot fluid is equal to the heat transfer to the cold fluid. 3 Changes in the kinetic and potential energies of fluid streams are negligible. 4 Fluid properties are constant.  

Properties The specific heat of water is 1.0 Btu/lbm.(F (Table A-3E). The enthalpy and entropy of vaporization of water at 120(F are 1025.2 Btu/lbm and sfg = 1.7686 Btu/lbm.R  (Table A-4E).

Analysis We take the tube-side of the heat exchanger where cold water is flowing as the system, which is a control volume. The energy balance for this steady-flow system can be expressed in the rate form as

     
[image: image482.wmf])

(

0)

pe

ke

  

(since

   

0

1

2

in

2

1

in

out

in

energies

 

etc.

 

potential,

         

kinetic,

 

internal,

in 

 

change

 

of

 

Rate

(steady)

  

0

system

mass

 

and

 

 work,

heat,

by 

 

nsfer

energy tra

net 

 

of

 

Rate

out

in

T

T

c

m

Q

h

m

h

m

Q

E

E

E

E

E

p

-

=

@

D

@

D

=

+

=

=

D

=

-

&

&

&

&

&

&

&

4

4

3

4

4

2

1

&

4

3

4

2

1

&

&

ä

 

Then the rate of heat transfer to the cold water in this heat exchanger becomes
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Noting that heat gain by the water is equal to the heat loss by the condensing steam, the rate of condensation of the steam in the heat exchanger is determined from
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 (b) The rate of entropy generation within the heat exchanger is determined by applying the rate form of the entropy balance on the entire heat exchanger: 
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Noting that water is an incompressible substance and steam changes from saturated vapor to saturated liquid, the rate of entropy generation is determined to be
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8-157 A regenerator is considered to save heat during the cooling of milk in a dairy plant. The amounts of fuel and money such a generator will save per year and the annual reduction in the rate of entropy generation are to be determined.

Assumptions 1 Steady operating conditions exist. 2  The properties of the milk are constant.

Properties The average density and specific heat of milk can be taken to be (milk

1 kg/L  and     cp, milk= 3.79 kJ/kg.(C  (Table A-3).

Analysis  The mass flow rate of the milk is
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Taking the pasteurizing section as the system, the energy balance for this steady-flow system can be expressed in the rate form as
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Therefore, to heat the milk from 4 to 72(C as being done currently, heat must be transferred to the milk at a rate of
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The proposed regenerator has an effectiveness of ( = 0.82, and thus it will save 82 percent of this energy. Therefore,
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Noting that the boiler has an efficiency of (boiler = 0.82, the energy savings above correspond to fuel savings of
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Noting that 1 year = 365(24=8760 h and unit cost of natural gas is $0.52/therm, the annual fuel and money savings will be

      
Fuel Saved = (0.02931 therms/s)(8760(3600 s) = 924,450 therms/yr
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The rate of entropy generation during this process is determined by applying the rate form of the entropy balance on an extended system that includes the regenerator and the immediate surroundings so that the boundary temperature is the surroundings temperature, which we take to be the cold water temperature of 18(C.: 
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Disregarding entropy transfer associated with fuel flow, the only significant difference between the two cases is the reduction is the entropy transfer to water due to the reduction in heat transfer to water, and is determined to be
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8-158 Stainless steel ball bearings leaving the oven at a uniform temperature of 900(C at a rate of 1400 /min are exposed to air and are cooled to 850(C before they are dropped into the water for quenching. The rate of heat transfer from the ball to the air and the rate of entropy generation due to this heat transfer are to be determined.

Assumptions 1 The thermal properties of the bearing balls are constant. 2 The kinetic and potential energy changes of the balls are negligible. 3 The balls are at a uniform temperature at the end of the process

Properties The density and specific heat of the ball bearings are given to be ( = 8085 kg/m3 and cp = 0.480 kJ/kg.(C.

Analysis  (a) We take a single bearing ball as the system. The energy balance for this closed system can be expressed as
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The total amount of heat transfer from a ball is
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Then the rate of heat transfer from the balls to the air becomes
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Therefore, heat is lost to the air at a rate of 4.10 kW.

(b) We again take a single bearing ball as the system. The entropy generated during this process can be determined by applying an entropy balance on an extended system that includes the ball and its immediate surroundings so that the boundary temperature of the extended system is at 30(C at all times:
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where

     
[image: image500.wmf]kJ/K

 

0001530

.

0

273

+

900

273

+

850

kJ/kg.K)ln

 

480

.

0

)(

kg

 

007315

.

0

(

ln

)

(

1

2

avg

1

2

system

-

=

=

=

-

=

D

T

T

mc

s

s

m

S


Substituting,
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Then the rate of entropy generation becomes  
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8-159 An egg is dropped into boiling water. The amount of heat transfer to the egg by the time it is cooked and the amount of entropy generation associated with this heat transfer process are to be determined.

Assumptions 1 The egg is spherical in shape with a radius of r0 = 2.75 cm.  2 The thermal properties of the egg are constant. 3 Energy absorption or release associated with any chemical and/or phase changes within the egg is negligible. 4 There are no changes in kinetic and potential energies.

Properties The density and specific heat of the egg are given to be ( = 1020 kg/m3 and cp = 3.32 kJ/kg.(C.

Analysis  We take the egg as the system. This is a closes system since no mass enters or leaves the egg. The energy balance for this closed system can be expressed as
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Then the mass of the egg and the amount of heat transfer become
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We again take a single egg as the system The entropy generated during this process can be determined by applying an entropy balance on an extended system that includes the egg and its immediate surroundings so that the boundary temperature of the extended system is at 97(C at all times:
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Substituting,
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8-160 Long cylindrical steel rods are heat-treated in an oven. The rate of heat transfer to the rods in the oven and the rate of entropy generation associated with this heat transfer process are to be determined.

Assumptions 1 The thermal properties of the rods are constant. 2 The changes in kinetic and potential energies are negligible.

Properties The density and specific heat of the steel rods are given to be ( = 7833 kg/m3 and cp = 0.465 kJ/kg.(C. 

Analysis  (a) Noting that the rods enter the oven at a velocity of 3 m/min and exit at the same velocity, we can say that a 3-m long section of the rod is heated in the oven in 1 min. Then the mass of the rod heated in 1 minute is 
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We take the 3-m section of the rod in the oven as the system. The energy balance for this closed system can be expressed as
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Substituting,
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Noting that this much heat is transferred in 1 min, the rate of heat transfer to the rod becomes  
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(b) We again take the 3-m long section of the rod as the system. The entropy generated during this process can be determined by applying an entropy balance on an extended system that includes the rod and its immediate surroundings so that the boundary temperature of the extended system is at 900(C at all times:
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Substituting,
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Noting that this much entropy is generated in 1 min, the rate of entropy generation becomes  
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8-161 The inner and outer surfaces of a brick wall are maintained at specified temperatures. The rate of entropy generation within the wall is to be determined.

 Assumptions  Steady operating conditions exist since the surface temperatures of the wall remain constant at the specified values.  
Analysis   We take the wall to be the system, which is a closed system. Under steady conditions, the rate form of the entropy balance for the wall simplifies to
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Therefore, the rate of entropy generation in the wall is 0.348 W/K.

8-162 A person is standing in a room at a specified temperature. The rate of entropy transfer from the body with heat is to be determined.

Assumptions  Steady operating conditions exist.  
Analysis  Noting that Q/T represents entropy transfer with heat, the rate of entropy transfer from the body of the person accompanying heat transfer is
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8-163 A 1000-W iron is left on the iron board with its base exposed to the air at 20°C. The rate of entropy generation is to be determined in steady operation.

Assumptions  Steady operating conditions exist.  
Analysis We take the iron to be the system, which is a closed system.  Considering that the iron experiences no change in its properties in steady operation, including its entropy, the rate form of the entropy balance for the iron simplifies to
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Therefore,
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The rate of total entropy generation during this process is determined by applying the entropy balance on an extended system that includes the iron and its immediate surroundings so that the boundary temperature of the extended system is at 20(C at all times. It gives
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Discussion Note that only about one-third of the entropy generation occurs within the iron.  The rest occurs in the air surrounding the iron as the temperature drops from 400(C to 20(C without serving any useful purpose.

8-164E A cylinder contains saturated liquid water at a specified pressure. Heat is transferred to liquid from a source and some liquid evaporates. The total entropy generation during this process is to be determined.   

Assumptions 1 No heat loss occurs from the water to the surroundings during the process. 2 The pressure inside the cylinder and thus the water temperature remains constant during the process. 3 No irreversibilities occur within the cylinder during the process.

Analysis The pressure of the steam is maintained constant.  Therefore, the temperature of the steam remains constant also at
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     (Table A-5E)

Taking the contents of the cylinder as the system and noting that the temperature of water remains constant, the entropy change of the system during this isothermal, internally reversible process becomes
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Similarly, the entropy change of the heat source is determined from
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Now consider a combined system that includes the cylinder and the source. Noting that no heat or mass crosses the boundaries of this combined system, the entropy balance for it can be expressed as   
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Therefore, the total entropy generated during this process is
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Discussion The entropy generation in this case is entirely due to the irreversible heat transfer through a finite temperature difference. We could also determine the total entropy generation by writing an energy balance on an extended system that includes the system and its immediate surroundings so that part of the boundary of the extended system, where heat transfer occurs, is at the source temperature.

8-165E Steam is decelerated in a diffuser from a velocity of 900 ft/s to 100 ft/s. The mass flow rate of steam and the rate of entropy generation are to be determined.

Assumptions 1 This is a steady-flow process since there is no change with time. 2 Potential energy changes are negligible. 3 There are no work interactions.
Properties The properties of steam at the inlet and the exit of the diffuser are (Tables A-4E through A-6E)
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Analysis (a) The mass flow rate of the steam can be determined from its definition to be
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(b) We take diffuser as the system, which is a control volume since mass crosses the boundary. The energy balance for this steady-flow system can be expressed in the rate form as
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Substituting, the rate of heat loss from the diffuser is determined to be
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The rate of total entropy generation during this process is determined by applying the entropy balance on an extended system that includes the diffuser and its immediate surroundings so that the boundary temperature of the extended system is 77(F at all times. It gives 
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Substituting, the total rate of entropy generation during this process becomes
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8-166 Steam expands in a turbine from a specified state to another specified state. The rate of entropy generation during this process is to be determined.

Assumptions 1 This is a steady-flow process since there is no change with time. 2 Kinetic and potential energy changes are negligible.
Properties From the steam tables (Tables A-4 through 6)
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Analysis  There is only one inlet and one exit, and thus 
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. We take the turbine as the system, which is a control volume since mass crosses the boundary. The energy balance for this steady-flow system can be expressed in the rate form as
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Substituting,


      
[image: image537.wmf]kJ/s

 

.3

819

kJ/s

 

4000

kJ/kg

)

9

.

2608

9

.

3302

)(

kg/s

 

0

25,000/360

(

out

=

-

-

=

Q

&


The rate of total entropy generation during this process is determined by applying the entropy balance on an extended system that includes the turbine and its immediate surroundings so that the boundary temperature of the extended system is 25(C at all times. It gives 
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Substituting, the rate of entropy generation during this process is determined to be
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8-167 A hot water stream is mixed with a cold water stream. For a specified mixture temperature, the mass flow rate of cold water stream and the rate of entropy generation are to be determined.

Assumptions 1 Steady operating conditions exist. 2 The mixing chamber is well-insulated so that heat loss to the surroundings is negligible. 3 Changes in the kinetic and potential energies of fluid streams are negligible.
Properties Noting that T < Tsat @ 200 kPa = 120.21(C, the water in all three streams exists as a compressed liquid, which can be approximated as a saturated liquid at the given temperature. Thus from Table A-4, 
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Analysis (a)  We take the mixing chamber as the system, which is a control volume. The mass and energy balances for this steady-flow system can be expressed in the rate form as

Mass balance:
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Energy balance:
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Combining the two relations gives       
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Solving for 

 and substituting, the mass flow rate of cold water stream is determined to be
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Also,
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(b) Noting that the mixing chamber is adiabatic and thus there is no heat transfer to the surroundings, the entropy balance of the steady-flow system (the mixing chamber) can be expressed as 
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Substituting, the total rate of entropy generation during this process becomes
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8-168 Liquid water is heated in a chamber by mixing it with superheated steam. For a specified mixing temperature, the mass flow rate of the steam and the rate of entropy generation are to be determined.

Assumptions 1 This is a steady-flow process since there is no change with time. 2 Kinetic and potential energy changes are negligible. 3 There are no work interactions.  
Properties Noting that T < Tsat @ 200 kPa = 120.21(C, the cold water and the exit mixture streams exist as a compressed liquid, which can be approximated as a saturated liquid at the given temperature. From Tables A-4 through A-6, 
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Analysis (a)  We take the mixing chamber as the system, which is a control volume. The mass and energy balances for this steady-flow system can be expressed in the rate form as

Mass balance:
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Energy balance:
   

              
[image: image550.wmf]3

3

out

2

2

1

1

out

in

energies

 

etc.

 

potential,

         

kinetic,

 

internal,

in 

 

change

 

of

 

Rate

(steady)

  

0

system

mass

 

and

 

 work,

heat,

by 

 

nsfer

energy tra

net 

 

of

 

Rate

out

in

0

h

m

Q

h

m

h

m

E

E

E

E

E

&

&

&

&

&

&

4

4

3

4

4

2

1

&

4

3

4

2

1

&

&

+

=

+

=

=

D

=

-

Ã


Combining the two relations gives    
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Solving for 

 and substituting, the mass flow rate of the superheated steam is determined to be
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Also, 
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(b) The rate of total entropy generation during this process is determined by applying the entropy balance on an extended system that includes the mixing chamber and its immediate surroundings so that the boundary temperature of the extended system is 25(C at all times. It gives 
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Substituting, the rate of entropy generation during this process is determined to be
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8-169 A rigid tank initially contains saturated liquid water. A valve at the bottom of the tank is opened, and half of mass in liquid form is withdrawn from the tank. The temperature in the tank is maintained constant.  The amount of heat transfer and the entropy generation during this process are to be determined.

Assumptions 1 This is an unsteady process since the conditions within the device are changing during the process, but it can be analyzed as a uniform-flow process since the state of fluid leaving the device remains constant.  2 Kinetic and potential energies are negligible. 3 There are no work interactions involved. 4 The direction of heat transfer is to the tank (will be verified).
Properties The properties of water are (Tables A-4 through A-6)
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Analysis (a) We take the tank as the system, which is a control volume since mass crosses the boundary. Noting that the microscopic energies of flowing and nonflowing fluids are represented by enthalpy h and internal energy u, respectively, the mass and energy balances for this uniform-flow system can be expressed as

Mass balance:        
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Energy balance:



[image: image558.wmf])

0

pe

ke

  

(since

  

1

1

2

2

in

energies

 

etc.

 

potential,

   

kinetic,

 

internal,

in 

 

Change

system

mass

 

and

 

 work,

heat,

by 

 

nsfer

energy tra

Net 

     

out

in

@

@

@

-

+

=

D

=

-

W

u

m

u

m

h

m

Q

E

E

E

e

e

4

3

4

2

1

4

3

4

2

1


The initial and the final masses in the tank are


[image: image559.wmf](

)

e

m

m

m

m

=

kg

 

137.55

kg

 

275.10

2

1

2

1

 

          

kg

 

.10

275

/kg

m

 

0.001091

m

 

0.3

1

2

3

3

1

1

=

=

=

=

=

=

v

V


Now we determine the final internal energy and entropy,
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The heat transfer during this process is determined by substituting these values into the energy balance equation,
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(b) The total entropy generation is determined by considering a combined system that includes the tank and the heat source. Noting that no heat crosses the boundaries of this combined system and no mass enters, the entropy balance for it can be expressed as   



[image: image562.wmf]{

source

tank

gen

entropy

in 

Change

 

system

generation

Entropy

  

gen

mass

 

and

heat 

by 

   

ansfer

entropy tr

Net 

out

in

S

S

S

s

m

S

S

S

S

e

e

D

+

D

=

+

-

¾

®

¾

D

=

+

-

4

3

4

2

1

4

3

4

2

1


Therefore, the total entropy generated during this process is
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8-170E An unknown mass of iron is dropped into water in an insulated tank while being stirred by a 200-W paddle wheel. Thermal equilibrium is established after 10 min. The mass of the iron block and the entropy generated during this process are to be determined.  

Assumptions 1 Both the water and the iron block are incompressible substances with constant specific heats at room temperature. 2 The system is stationary and thus the kinetic and potential energy changes are zero. 3 The system is well-insulated and thus there is no heat transfer.

Properties The specific heats of water and the iron block at room temperature are cp, water = 1.00 Btu/lbm.(F    and cp, iron = 0.107 Btu/lbm.(F (Table A-3E). The density of water at room temperature is 62.1 lbm/ft³.

Analysis (a) We take the entire contents of the tank, water + iron block, as the system. This is a closed system since no mass crosses the system boundary during the process. The energy balance on the system can be expressed as
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Using specific heat values for iron and liquid water and substituting,
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(b) Again we take the iron + water in the tank to be the system. Noting that no heat or mass crosses the boundaries of this combined system, the entropy balance for it can be expressed as   
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where
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Therefore, the entropy generated during this process is
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8-171E Air is compressed steadily by a compressor. The mass flow rate of air through the compressor and the rate of entropy generation are to be determined.

Assumptions 1 This is a steady-flow process since there is no change with time. 2 Potential energy changes are negligible.  3 Air is an ideal gas with variable specific heats.
Properties The gas constant of air is 0.06855 Btu/lbm.R (Table A-1E). The inlet and exit enthalpies of air are (Table A-21E)
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 Analysis (a) We take the compressor as the system, which is a control volume since mass crosses the boundary. The energy balance for this steady-flow system can be expressed in the rate form as
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Substituting, the mass flow rate is determined to be

Thus,
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It yields
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(b) Again we take the compressor to be the system. Noting that no heat or mass crosses the boundaries of this combined system, the entropy balance for it can be expressed as
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Substituting, the rate of entropy generation during this process is determined to be
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8-172 Steam is accelerated in a nozzle from a velocity of 70 m/s to 320 m/s. The exit temperature and the rate of entropy generation are to be determined.

Assumptions 1 This is a steady-flow process since there is no change with time. 2 Potential energy changes are negligible. 3 There are no work interactions. 4 The device is adiabatic and thus heat transfer is negligible.
Properties From the steam tables (Table A-6),
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Analysis  (a) There is only one inlet and one exit, and thus 
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. We take nozzle as the system, which is a control volume since mass crosses the boundary. The energy balance for this steady-flow system can be expressed in the rate form as
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Substituting,,

or,
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Thus,
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The mass flow rate of steam is
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(b) Again we take the nozzle to be the system. Noting that no heat crosses the boundaries of this combined system, the entropy balance for it can be expressed as
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Substituting, the rate of entropy generation during this process is determined to be
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Review Problems

8-173E The source and sink temperatures and the thermal efficiency of a heat engine are given. The entropy change of the two reservoirs is to be calculated and it is to be determined if this engine satisfies the increase of entropy principle.

Assumptions  The heat engine operates steadily.  

Analysis According to the first law and the definition of the thermal efficiency,
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when the thermal efficiency is 40%. The entropy change of everything involved in this process is then
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Since the entropy of everything has increased, this engine is possible. When the thermal efficiency of the engine is 70%,
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The total entropy change is then
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which is a decrease in the entropy of everything involved with this engine.  Therefore, this engine is now impossible.

8-174 The source and sink temperatures and the COP of a refrigerator are given. The total entropy change of the two reservoirs is to be calculated and it is to be determined if this refrigerator satisfies the second law.

Assumptions  The refrigerator operates steadily.  

Analysis  Combining the first law and the definition of the coefficient of performance produces
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when COP = 4. The entropy change of everything is then
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Since the entropy increases, a refrigerator with COP = 4 is possible. When the coefficient of performance is increased to 6,
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and the net entropy change is
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and the refrigerator can no longer be possible.

8-175 The operating conditions and thermal reservoir temperatures of a heat pump are given. It is to be determined if the increase of entropy principle is satisfied.

Assumptions  The heat pump operates steadily.  

Analysis  Applying the first law to the cyclic heat pump gives
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According to the definition of the entropy, the rate at which the entropy of the high-temperature reservoir increases is
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Similarly, the rate at which the entropy of the low-temperature reservoir decreases is
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The rate at which the entropy of everything changes is then
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which is positive and therefore it satisfies the increase in entropy principle.

8-176 Steam is expanded adiabatically in a closed system. The minimum internal energy that can be achieved during this process is to be determined.
Analysis The entropy at the initial state is
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The internal energy will be minimum if the process is isentropic. Then, 
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8-177E Water is expanded in an isothermal, reversible process. It is to be determined if the process is possible. 
Analysis The entropies at the initial and final states are (Tables A-5E and A-6E)
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The heat transfer during this isothermal, reversible process is the area under the process line:
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The total entropy change (i.e., entropy generation) is the sum of the entropy changes of water and the reservoir:
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Note that the sign of heat transfer is with respect to the reservoir.  

8-178E Air is compressed adiabatically in a closed system. It is to be determined if this process is possible.
Assumptions 1 Changes in the kinetic and potential energies are negligible.  4 Air is an ideal gas with constant specific heats.
Properties The properties of air at room temperature are R = 0.3704 psia(ft3/lbm(R, cp = 0.240 Btu/lbm(R (Table A-2Ea).

Analysis  The specific volume of air at the initial state is
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The volume at the final state will be minimum if the process is isentropic. The specific volume for this case is determined from the isentropic relation of an ideal gas to be
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and the minimum volume is
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which is greater than the proposed volume 4 ft3/lbm. Hence, it is not possible to compress this air into 4 ft3/lbm. 
8-179 Oxygen is expanded adiabatically in a piston-cylinder device. The maximum volume is to be determined.
Assumptions 1 Changes in the kinetic and potential energies are negligible.  4 Oxygen is an ideal gas with constant specific heats.
Properties The gas constant of oxygen is R = 0.2598 kPa(m3/kg(K. The specific heat ratio at the room temperature is k = 1.395 (Table A-2a).

Analysis  The volume of oxygen at the initial state is
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The volume at the final state will be maximum if the process is isentropic. The volume for this case is determined from the isentropic relation of an ideal gas to be
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8-180E A solid block is heated with saturated water vapor. The final temperature of the block and water, and the entropy changes of the block, water, and the entire system are to be determined.

Assumptions 1 The system is stationary and thus the kinetic and potential energy changes are zero. 2 There are no work interactions involved. 3 There is no heat transfer between the system and the surroundings.
Analysis (a) As the block is heated, some of the water vapor will be condensed. We will assume (will be checked later) that the water is a mixture of liquid and vapor at the end of the process. Based upon this assumption, the final temperature of the water and solid block is 212(F (The saturation temperature at 14.7 psia). The heat picked up by the block is
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The water properties at the initial state are
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(Table A-5E)

The heat released by the water is equal to the heat picked up by the block. Also noting that the pressure of water remains constant, the enthalpy of water at the end of the heat exchange process is determined from
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The state of water at the final state is saturated mixture. Thus, our initial assumption was correct. The properties of water at the final state are
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The entropy change of the water is then
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(b) The entropy change of the block is
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(c) The total entropy change is
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The positive result for the total entropy change (i.e., entropy generation) indicates that this process is possible.

8-181 Air is compressed in a piston-cylinder device. It is to be determined if this process is possible. 
Assumptions 1 Changes in the kinetic and potential energies are negligible.  4 Air is an ideal gas with constant specific heats. 3 The compression process is reversible.
Properties The properties of air at room temperature are R = 0.287 kPa(m3/kg(K, cp = 1.005 kJ/kg(K (Table A-2a).

Analysis We take the contents of the cylinder as the system. This is a closed system since no mass enters or leaves. The energy balance for this stationary closed system can be expressed as
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The work input for this isothermal, reversible process is
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That is,
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The entropy change of air during this isothermal process is
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The entropy change of the reservoir is



[image: image622.wmf]K

kJ/kg

 

0.2630

K

 

300

kJ/kg

 

89

.

78

R

R

×

=

=

=

D

R

T

q

s


Note that the sign of heat transfer is taken with respect to the reservoir.  The total entropy change (i.e., entropy generation) is the sum of the entropy changes of air and the reservoir:
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Not only this process is possible but also completely reversible. 

8-182 A paddle wheel does work on the water contained in a rigid tank. For a zero entropy change of water, the final pressure in the tank, the amount of heat transfer between the tank and the surroundings, and the entropy generation during the process are to be determined.

Assumptions The tank is stationary and the kinetic and potential energy changes are negligible. 
Analysis (a) Using saturated liquid properties for the compressed liquid at the initial state (Table A-4) 
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The entropy change of water is zero, and thus at the final state we have
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(b) The heat transfer can be determined from an energy balance on the tank
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(c) Since the entropy change of water is zero, the entropy generation is only due to the entropy increase of the surroundings, which is determined from
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8-183 A horizontal cylinder is separated into two compartments by a piston, one side containing nitrogen and the other side containing helium. Heat is added to the nitrogen side. The final temperature of the helium, the final volume of the nitrogen, the heat transferred to the nitrogen, and the entropy generation during this process are to be determined.

Assumptions 1 Kinetic and potential energy changes are negligible. 2 Nitrogen and helium are ideal gases with constant specific heats at room temperature. 3 The piston is adiabatic and frictionless.
Properties The properties of nitrogen at room temperature are R = 0.2968 kPa.m3/kg.K, cp = 1.039 kJ/kg.K, cv = 0.743 kJ/kg.K, k = 1.4. The properties for helium are R = 2.0769 kPa.m3/kg.K, cp = 5.1926 kJ/kg.K, cv = 3.1156 kJ/kg.K, k = 1.667 (Table A-2).

Analysis (a) Helium undergoes an isentropic compression process, and thus the final helium temperature is determined from
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(b) The initial and final volumes of the helium are
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Then, the final volume of nitrogen becomes
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(c) The mass and final temperature of nitrogen are
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The heat transferred to the nitrogen is determined from an energy balance
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(d) Noting that helium undergoes an isentropic process, the entropy generation is determined to be
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8-184 An electric resistance heater is doing work on carbon dioxide contained an a rigid tank. The final temperature in the tank, the amount of heat transfer, and the entropy generation are to be determined.

Assumptions 1 Kinetic and potential energy changes are negligible. 2 Carbon dioxide is ideal gas with constant specific heats at room temperature.
Properties The properties of CO2 at an anticipated average temperature of 350 K are R = 0.1889 kPa.m3/kg.K, cp = 0.895 kJ/kg.K, cv = 0.706 kJ/kg.K (Table A-2b).

Analysis (a) The mass and the final temperature of CO2 may be determined from ideal gas equation
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(b) The amount of heat transfer may be determined from an energy balance on the system
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(c) The entropy generation associated with this process may be obtained by calculating total entropy change, which is the sum of the entropy changes of CO2 and the surroundings
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8-185 Heat is lost from the helium as it is throttled in a throttling valve. The exit pressure and temperature of helium and the entropy generation are to be determined.

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 3 Helium is an ideal gas with constant specific heats.
Properties The properties of helium are R = 2.0769 kPa.m3/kg.K, cp = 5.1926 kJ/kg.K (Table A-2a).

Analysis (a) The final temperature of helium may be determined from an energy balance on the control volume
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The final pressure may be determined from the relation for the entropy change of helium
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(b) The entropy generation associated with this process may be obtained by adding the entropy change of helium as it flows in the valve and the entropy change of the surroundings
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8-186 Refrigerant-134a is compressed in a compressor. The rate of heat loss from the compressor, the exit temperature of R-134a, and the rate of entropy generation are to be determined.

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible.
Analysis (a) The properties of R-134a at the inlet of the compressor are (Table A-12)



[image: image643.wmf]kJ/kg.K

 

93773

.

0

kJ/kg

 

46

.

244

/kg

m

 

09987

.

0

1

kPa

 

200

1

1

3

1

1

1

=

=

=

þ

ý

ü

=

=

s

h

x

P

v


The mass flow rate of the refrigerant is
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Given the entropy increase of the surroundings, the heat lost from the compressor is
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(b) An energy balance on the compressor gives
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The exit state is now fixed. Then,
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(c) The entropy generation associated with this process may be obtained by adding the entropy change of R-134a as it flows in the compressor and the entropy change of the surroundings
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8-187 Air flows in an adiabatic nozzle. The isentropic efficiency, the exit velocity, and the entropy generation are to be determined.

Properties The gas constant of air is R = 0.287 kJ/kg.K (Table A-1).
Assumptions 1 Steady operating conditions exist. 2 Potential energy changes are negligible.
Analysis (a) (b) Using variable specific heats, the properties can be determined from air table as follows
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Energy balances on the control volume for the actual and isentropic processes give
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The isentropic efficiency is determined from its definition,



[image: image652.wmf]0.925

=

=

=

2

2

2

2s

2

2

N

m/s)

 

8

.

331

(

m/s)

 

1

.

319

(

V

V

h


(c) Since the nozzle is adiabatic, the entropy generation is equal to the entropy increase of the air as it flows in the nozzle
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8-188 It is to be shown that the difference between the steady-flow and boundary works is the flow energy. 

Analysis The total differential of flow energy Pv can be expressed as
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Therefore, the difference between the reversible steady-flow work and the reversible boundary work is the flow energy.

8-189 An insulated rigid tank is connected to a piston-cylinder device with zero clearance that is maintained at constant pressure. A valve is opened, and some steam in the tank is allowed to flow into the cylinder.  The final temperatures in the tank and the cylinder are to be determined.  

 Assumptions 1 Both the tank and cylinder are well-insulated and thus heat transfer is negligible.  2 The water that remains in the tank underwent a reversible adiabatic process. 3 The thermal energy stored in the tank and cylinder themselves is negligible. 4 The system is stationary and thus kinetic and potential energy changes are negligible.

Analysis (a) The steam in tank A undergoes a reversible, adiabatic process, and thus s2 = s1.  From the steam tables (Tables A-4 through A-6),
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The initial and the final masses in tank A are

Thus,
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(b) The boundary work done during this process is
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Taking the contents of both the tank and the cylinder to be the system, the energy balance for this closed system can be expressed as
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or,

[image: image659.wmf](

)

(

)

(

)

(

)

(

)

0

0

0

1

1

2

2

,

2

,

2

2

2

1

1

2

2

,

2

,

2

out

b,

=

-

+

=

+

-

+

=

D

+

D

+

A

B

B

B

A

B

B

B

B

A

u

m

u

m

h

m

u

m

u

m

u

m

m

P

U

U

W

v


Thus,
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At 150 kPa, hf = 467.13 and hg = 2693.1 kJ/kg.  Thus at the final state, the cylinder will contain a saturated liquid-vapor mixture since hf < h2 < hg.  Therefore,
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8-190 Carbon dioxide is compressed in a reversible isothermal process using a steady-flow device. The work required and the heat transfer are to be determined. 
Assumptions 1 Steady operating conditions exist. 2 Changes in the kinetic and potential energies are negligible.  3 CO2 is an ideal gas with constant specific heats. 
Properties The gas constant of CO2 is R = 0.1889 kPa(m3/kg(K (Table A-2a).

Analysis There is only one inlet and one exit, and thus 
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. We take the compressor as the system, which is a control volume since mass crosses the boundary. The energy balance for this steady-flow system can be expressed in the rate form as
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The work input for this isothermal, reversible process is
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From the energy balance equation,
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8-191 Carbon dioxide is compressed in an isentropic process using a steady-flow device. The work required and the heat transfer are to be determined. 
Assumptions 1 Steady operating conditions exist. 2 Changes in the kinetic and potential energies are negligible.  3 CO2 is an ideal gas with constant specific heats. 
Properties The gas constant of CO2 is R = 0.1889 kPa(m3/kg(K. Other properties at room temperature are cp = 0.846 kJ/kg(K and k =1.289 (Table A-2a).
Analysis There is only one inlet and one exit, and thus 
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The temperature at the compressor exit for the isentropic process of an ideal gas is
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Substituting,
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The work input increases from 76.7 kJ/kg to 90.4 kJ/kg when the process is executed isentropically instead of isothermally.  Since the process is isentropic (i.e., reversible, adiabatic), the heat transfer is zero. 

8-192 R-134a is compressed in an isentropic compressor. The work required is to be determined.

Assumptions 1 This is a steady-flow process since there is no change with time. 2 The process is isentropic (i.e., reversible-adiabatic). 3 Kinetic and potential energy changes are negligible.
Analysis There is only one inlet and one exit, and thus 
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. We take the compressor as the system, which is a control volume since mass crosses the boundary. The energy balance for this steady-flow system can be expressed in the rate form as
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The inlet state properties are
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For this isentropic process, the final state enthalpy is
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Substituting,
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8-193 Refrigerant-134a is expanded adiabatically in a capillary tube. The rate of entropy generation is to be determined.

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 
Analysis The rate of entropy generation within the expansion device during this process can be determined by applying the rate form of the entropy balance on the system. Noting that the system is adiabatic and thus there is no heat transfer, the entropy balance for this steady-flow system can be expressed as 
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It may be easily shown with an energy balance that the enthalpy remains constant during the throttling process. The properties of the refrigerant at the inlet and exit states are (Tables A-11 through A-13)
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Substituting,
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8-194 Steam is expanded in an adiabatic turbine. Six percent of the inlet steam is bled for feedwater heating. The isentropic efficiencies for two stages of the turbine are given. The power produced by the turbine and the overall efficiency of the turbine are to be determined.

Assumptions 1 This is a steady-flow process since there is no change with time. 2 The turbine is well-insulated, and there is no heat transfer from the turbine. 
Analysis There is one inlet and two exits. We take the turbine as the system, which is a control volume since mass crosses the boundary. The energy balance for this steady-flow system can be expressed in the rate form as
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The isentropic and actual enthalpies at three states are determined using steam tables as follows:
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Substituting,
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The overall isentropic efficiency of the turbine is
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8-195 Air is compressed steadily by a compressor from a specified state to a specified pressure. The minimum power input required is to be determined for the cases of adiabatic and isothermal operation. 

Assumptions 1 This is a steady-flow process since there is no change with time. 2 Kinetic and potential energy changes are negligible. 3 Air is an ideal gas with variable specific heats. 4 The process is reversible since the work input to the compressor will be minimum when the compression process is reversible.
Properties The gas constant of air is R = 0.287 kJ/kg.K (Table A-1).  

Analysis (a) For the adiabatic case, the process will be reversible and adiabatic (i.e., isentropic), 

thus the isentropic relations are applicable.  
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The energy balance for the compressor, which is a steady-flow system, can be expressed in the rate form as
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Substituting, the power input to the compressor is determined to be
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(b)  In the case of the reversible isothermal process, the steady-flow energy balance becomes
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since h = h(T) for ideal gases, and thus the enthalpy change in this case is zero. Also, for a reversible isothermal process,

where  

[image: image696.wmf](

)

(

)

(

)

(

)

K

kJ/kg

 

0.5585

kPa

 

100

kPa

 

700

ln

 

K

kJ/kg

 

0.287

ln

ln

1

2

1

2

0

1

2

1

2

1

2

2

1

out

×

-

=

×

-

=

-

=

-

-

=

-

-

-

=

-

=

P

P

R

P

P

R

s

s

s

s

s

s

T

m

s

s

T

m

Q

Ã

o

o

&

&

&


Substituting, the power input for the reversible isothermal case becomes
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8-196 Refrigerant-134a is compressed by a 0.7-kW adiabatic compressor from a specified state to another specified state. The isentropic efficiency, the volume flow rate at the inlet, and the maximum flow rate at the compressor inlet are to be determined. 

Assumptions 1 This is a steady-flow process since there is no change with time. 2 Kinetic and potential energy changes are negligible. 3 The device is adiabatic and thus heat transfer is negligible.
Properties From the R-134a tables (Tables A-11 through A-13)
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Analysis (a) The isentropic efficiency is determined from its definition,



[image: image699.wmf]82.5%

=

=

-

-

=

-

-

=

825

.

0

36

.

246

53

.

288

36

.

246

16

.

281

1

2

1

2

h

h

h

h

a

s

C

h


(b) There is only one inlet and one exit, and thus 
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. We take the actual compressor as the system, which is a control volume. The energy balance for this steady-flow system can be expressed as
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Then the mass and volume flow rates of the refrigerant are determined to be
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(c)  The volume flow rate will be a maximum when the process is isentropic, and it is determined similarly from the steady-flow energy equation applied to the isentropic process. It gives
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Discussion Note that the raising the isentropic efficiency of the compressor to 100% would increase the volumetric flow rate by more than 20%.

8-197E Helium is accelerated by a 94% efficient nozzle from a low velocity to 1000 ft/s. The pressure and temperature at the nozzle inlet are to be determined.

Assumptions 1 This is a steady-flow process since there is no change with time. 2 Helium is an ideal gas with constant specific heats. 3 Potential energy changes are negligible. 4 The device is adiabatic and thus heat transfer is negligible. 
Properties The specific heat ratio of helium is k = 1.667. The constant pressure specific heat of helium is 1.25 Btu/lbm.R (Table A-2E).

Analysis We take nozzle as the system, which is a control volume since mass crosses the boundary. The energy balance for this steady-flow system can be expressed in the rate form as
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Solving for T1 and substituting,
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From the isentropic efficiency relation,

or,
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From the isentropic relation,  
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8-198 … 8-201  Design and Essay Problems
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vapor


500 kPa


0.4 m3





150 kPa





100 kPa


20°C








400 kPa
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20°C





400 kPa
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sat. vapor





800 kPa
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(12(C





Capillary tube





Turbine





4 MPa


350°C





30 kPa





800 kPa
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0.8 MPa
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