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Lumped System Analysis 
 
11-1C In heat transfer analysis, some bodies are observed to behave like a "lump" whose entire body 
temperature remains essentially uniform at all times during a heat transfer process. The temperature of such 
bodies can be taken to be a function of time only. Heat transfer analysis which utilizes this idealization is 
known as the lumped system analysis. It is applicable when the Biot number (the ratio of conduction 
resistance within the body to convection resistance at the surface of the body) is less than or equal to 0.1. 
 
11-2C The lumped system analysis is more likely to be applicable for the body cooled naturally since the 
Biot number is proportional to the convection heat transfer coefficient, which is proportional to the air 
velocity. Therefore, the Biot number is more likely to be less than 0.1 for the case of natural convection. 
 
11-3C The lumped system analysis is more likely to be applicable for the body allowed to cool in the air 
since the Biot number is proportional to the convection heat transfer coefficient, which is larger in water 
than it is in air because of the larger thermal conductivity of water. Therefore, the Biot number is more 
likely to be less than 0.1 for the case of the solid cooled in the air 
 
11-4C The temperature drop of the potato during the second minute will be less than  4°C since the 
temperature of a body approaches the temperature of the surrounding medium asymptotically, and thus it 
changes rapidly at the beginning, but slowly later on. 
 
11-5C The temperature rise of the potato during the second minute will be less than  5°C since the 
temperature of a body approaches the temperature of the surrounding medium asymptotically, and thus it 
changes rapidly at the beginning, but slowly later on. 
 
11-6C Biot number represents the ratio of conduction resistance within the body to convection resistance at 
the surface of the body. The Biot number is more likely to be larger for poorly conducting solids since such 
bodies have larger resistances against heat conduction. 
 
11-7C The heat transfer is proportional to the surface area. Two half pieces of the roast have a much larger 
surface area than the single piece and thus a higher rate of heat transfer. As a result, the two half pieces will 
cook much faster than the single large piece. 
 
11-8C The cylinder will cool faster than the sphere since heat transfer rate is proportional to the surface 
area, and the sphere has the smallest area for a given volume. 
 
11-9C The lumped system analysis is more likely to be applicable in air than in water since the convection 
heat transfer coefficient and thus the Biot number is much smaller in air. 
 
11-10C The lumped system analysis is more likely to be applicable for a golden apple than for an actual 
apple since the thermal conductivity is much larger and thus the Biot number is much smaller for gold. 
 
11-11C The lumped system analysis is more likely to be applicable to slender bodies than the well-rounded 
bodies since the characteristic length (ratio of volume to surface area) and thus the Biot number is much 
smaller for slender bodies. 
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11-12 Relations are to be obtained for the characteristic lengths of a large plane wall of thickness 2L, a 
very long cylinder of radius ro and a sphere of radius ro. 
Analysis Relations for the characteristic 
lengths of a large plane wall of thickness 2L, a 
very long cylinder of radius ro and a sphere of 
radius ro are 
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11-13 A relation for the time period for a lumped system to reach the average temperature 2/)( ∞+TTi  is 
to be obtained. 
Analysis The relation for time period for a lumped system to reach the average temperature 2/)( ∞+TTi  
can be determined as 
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11-14 The temperature of a gas stream is to be measured by a thermocouple. The time it takes to register 99 
percent of the initial ΔT is to be determined.  
Assumptions 1 The junction is spherical in shape with a diameter of D = 0.0012 m. 2 The thermal 
properties of the junction are constant. 3 The heat transfer coefficient is constant and uniform over the 
entire surface. 4 Radiation effects are negligible. 5 The Biot number is Bi < 0.1 so that the lumped system 
analysis is applicable (this assumption will be verified). 

Properties The properties of the junction are given to be C W/m.35 °=k , 3kg/m 8500=ρ , and 
CJ/kg. 320 °=pc . 

Analysis The characteristic length of the junction and the Biot number are 
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Since 0.1< Bi , the lumped system analysis is applicable. 
Then the time period for the thermocouple to read 99% of the 
initial temperature difference is determined from 
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11-15E A number of brass balls are to be quenched in a water bath at a specified rate. The temperature of 
the balls after quenching and the rate at which heat needs to be removed from the water in order to keep its 
temperature constant are to be determined.  
Assumptions 1 The balls are spherical in shape with a radius of ro = 1 in. 2 The thermal properties of the 
balls are constant. 3 The heat transfer coefficient is constant and uniform over the entire surface. 4 The 
Biot number is Bi < 0.1 so that the lumped system analysis is applicable (this assumption will be verified). 
Properties The thermal conductivity, density, and specific heat of the brass balls are given to be k = 64.1 
Btu/h.ft.°F, ρ = 532 lbm/ft3, and cp = 0.092 Btu/lbm.°F. 
Analysis (a) The characteristic length and the 
Biot number for the brass balls are 
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The lumped system analysis is applicable since Bi < 0.1. Then the temperature of the balls after quenching 
becomes 
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(b) The total amount of heat transfer from a ball during a 2-minute period is 
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Then the rate of heat transfer from the balls to the water becomes 

  Btu/min 1196=×== )Btu 97.9(balls/min) 120(ballballQnQtotal &&   

Therefore, heat must be removed from the water at a rate of 1196 Btu/min in order to keep its temperature 
constant at 120°F. 

Brass balls, 250°F 

Water bath, 120°F 
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11-16E A number of aluminum balls are to be quenched in a water bath at a specified rate. The temperature 
of balls after quenching and the rate at which heat needs to be removed from the water in order to keep its 
temperature constant are to be determined.  
Assumptions 1 The balls are spherical in shape with a radius of ro = 1 in. 2 The thermal properties of the 
balls are constant. 3 The heat transfer coefficient is constant and uniform over the entire surface. 4 The 
Biot number is Bi < 0.1 so that the lumped system analysis is applicable (this assumption will be verified). 
Properties The thermal conductivity, density, and specific heat of the aluminum balls are k = 137 
Btu/h.ft.°F, ρ = 168 lbm/ft3, and cp = 0.216 Btu/lbm.°F (Table A-24E). 
Analysis (a) The characteristic length and the 
Biot number for the aluminum balls are 
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The lumped system analysis is applicable since Bi < 0.1. Then the temperature of the balls after quenching 
becomes 
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(b) The total amount of heat transfer from a ball during a 2-minute period is 
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Then the rate of heat transfer from the balls to the water becomes 

  Btu/min 1034=×== )Btu 62.8(balls/min) 120(ballballQnQtotal &&   

Therefore, heat must be removed from the water at a rate of 1034 Btu/min in order to keep its temperature 
constant at 120°F. 

Aluminum balls, 
250°F 

Water bath, 120°F 
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11-17 Milk in a  thin-walled glass container is to be warmed up by placing it into a large pan filled with hot 
water. The warming time of the milk is to be determined. 
Assumptions 1 The glass container is cylindrical in shape with a 
radius of r0 = 3 cm. 2 The thermal properties of the milk are taken 
to be the same as those of water. 3 Thermal properties of the milk 
are constant at room temperature. 4 The heat transfer coefficient is 
constant and uniform over the entire surface. 5 The Biot number in 
this case is large (much larger than 0.1). However, the lumped 
system analysis is still applicable since the milk is stirred 
constantly, so that its temperature remains uniform at all times.  
Properties The thermal conductivity, density, and specific heat of 
the milk at 20°C are k = 0.598 W/m.°C, ρ = 998 kg/m3, and cp = 
4.182 kJ/kg.°C (Table A-15). 
Analysis The characteristic length and Biot number for the glass of milk are 
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For the reason explained above we can use the lumped system analysis to determine how long it will take 
for the milk to warm up to 38°C: 
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Therefore, it will take about 6 minutes to warm the milk from 3 to 38°C. 

Water
60°C 

Milk 
3°C 
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11-18 A thin-walled glass containing milk is placed into a large pan filled with hot water to warm up the 
milk. The warming time of the milk is to be determined. 
Assumptions 1 The glass container is cylindrical in shape with a 
radius of r0 = 3 cm. 2 The thermal properties of the milk are taken 
to be the same as those of water. 3 Thermal properties of the milk 
are constant at room temperature. 4 The heat transfer coefficient is 
constant and uniform over the entire surface. 5 The Biot number in 
this case is large (much larger than 0.1). However, the lumped 
system analysis is still applicable since the milk is stirred 
constantly, so that its temperature remains uniform at all times.  
Properties The thermal conductivity, density, and specific heat of 
the milk at 20°C are k = 0.598 W/m.°C, ρ = 998 kg/m3, and cp = 
4.182 kJ/kg.°C (Table A-15). 
Analysis The characteristic length and Biot number for the glass of milk are 
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For the reason explained above we can use the lumped system analysis to determine how long it will take 
for the milk to warm up to 38°C: 
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Therefore, it will take about 3 minutes to warm the milk from 3 to 38°C. 
 
 
 
11-19 A long copper rod is cooled to a specified temperature. The cooling time is to be determined.  
Assumptions 1 The thermal properties of the geometry are constant. 2 The heat transfer coefficient is 
constant and uniform over the entire surface.  
Properties The properties of copper are k = 401 W/m⋅ºC, ρ = 8933 kg/m3, and cp = 0.385 kJ/kg⋅ºC (Table 
A-24). 
Analysis For cylinder, the characteristic length and the Biot number are 
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Since 0.1< Bi , the lumped system analysis is applicable. Then the cooling time is determined from 
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Water
60°C 

Milk 
3°C 

Ti = 100 ºC 

D = 2 cm 
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11-20 The heating times of a sphere, a cube, and a rectangular prism with similar dimensions are to be 
determined.  
Assumptions 1 The thermal properties of the geometries are constant. 2 The heat transfer coefficient is 
constant and uniform over the entire surface.  
Properties The properties of silver are given to be k = 429 W/m⋅ºC, ρ = 10,500 kg/m3, and cp = 0.235 
kJ/kg⋅ºC. 
Analysis For sphere, the characteristic length and the Biot number are 
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Since 0.1< Bi , the lumped system analysis is applicable. Then the time period for the sphere temperature 
to reach to 25ºC is determined from 
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Cube: 
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Rectangular prism: 
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The heating times are same for the sphere and cube while it is smaller in rectangular prism. 

5 cm Air 
h, T∞ 

Air 
h, T∞ 5 cm 

5 cm

5 cm

Air 
h, T∞ 5 cm 

6 cm

4 cm
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11-21E A person shakes a can of drink in a iced water to cool it. The cooling time of the drink is to be 
determined. 
Assumptions 1 The can containing the drink is cylindrical in shape 
with a radius of ro = 1.25 in. 2 The thermal properties of the drink 
are taken to be the same as those of water. 3 Thermal properties of 
the drinkare constant at room temperature. 4 The heat transfer 
coefficient is constant and uniform over the entire surface. 5 The 
Biot number in this case is large (much larger than 0.1). However, 
the lumped system analysis is still applicable since the drink is 
stirred constantly, so that its temperature remains uniform at all 
times.  
Properties The density and specific heat of water at room 
temperature are ρ = 62.22 lbm/ft3, and cp = 0.999 Btu/lbm.°F 
(Table A-15E). 
Analysis Application of lumped system analysis in this case gives 
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Therefore, it will take 10 minutes and 15 seconds to cool the canned drink to 40°F. 

Milk 
3°C 

Water 
32°F 

Drink 
90°F 
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11-22 An iron whose base plate is made of an aluminum alloy is turned on. The time for the plate 
temperature to reach 140°C and whether it is realistic to assume the plate temperature to be uniform at all 
times are to be determined.  
Assumptions 1 85 percent of the heat generated in the resistance wires is transferred to the plate. 2 The 
thermal properties of the plate are constant. 3 The heat transfer coefficient is constant and uniform over the 
entire surface.  
Properties The density, specific heat, and thermal diffusivity of the aluminum alloy plate are given to be ρ 
= 2770 kg/m3, cp = 875 kJ/kg.°C, and α = 7.3×10-5 m2/s. The thermal conductivity of the plate can be 
determined from k = αρcp = 177 W/m.°C (or it can be read from Table A-24).  
Analysis The mass of the iron's base plate is 

 kg 4155.0)m 03.0)(m 005.0)(kg/m 2770( 23 ==== LAm ρρV  

Noting that only 85 percent of the heat generated is transferred to the 
plate, the rate of heat transfer to the iron's base plate is 

   W850 W100085.0in =×=Q&  

The temperature of the plate, and thus the rate of heat transfer from the 
plate, changes during the process. Using the average plate temperature, 
the average rate of heat loss from the plate is determined from 
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 plateplateoutinplateoutin      TmcEtQtQEEE pΔ=Δ=Δ−Δ→Δ=− &&  

Solving for Δt and substituting,  

  =
J/s 21.2)(850

C)22140)(CJ/kg. 875)(kg 4155.0(
=

outin
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°−°
−

Δ
=Δ

QQ
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t p

&&
 

which is the time required for the plate temperature to reach 140 °C . To determine whether it is realistic to 
assume the plate temperature to be uniform at all times, we need to calculate the Biot number, 
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It is realistic to assume uniform temperature for the plate since Bi < 0.1. 
Discussion This problem can also be solved by obtaining the differential equation from an energy balance 
on the plate for a differential  time interval, and solving the differential equation. It gives 

⎟
⎟
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⎞
⎜
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⎝
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Substituting the known quantities and solving for t again gives 51.8 s. 

Air 
22°C

IRON 
1000 W 
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11-23 EES Prob. 11-22 is reconsidered. The effects of the heat transfer coefficient and the final plate 
temperature on the time it will take for the plate to reach this temperature are to be investigated.  
Analysis The problem is solved using EES, and the solution is given below. 
 
"GIVEN" 
E_dot=1000 [W] 
L=0.005 [m] 
A=0.03 [m^2] 
T_infinity=22 [C] 
T_i=T_infinity 
h=12 [W/m^2-C] 
f_heat=0.85 
T_f=140 [C] 
 
"PROPERTIES" 
rho=2770 [kg/m^3] 
c_p=875 [J/kg-C] 
alpha=7.3E-5 [m^2/s] 
 
"ANALYSIS" 
V=L*A 
m=rho*V 
Q_dot_in=f_heat*E_dot 
Q_dot_out=h*A*(T_ave-T_infinity) 
T_ave=1/2*(T_i+T_f) 
(Q_dot_in-Q_dot_out)*time=m*c_p*(T_f-T_i) "energy balance on the plate" 
 
 

h [W/m2.C] time [s] 
5 51 
7 51.22 
9 51.43 

11 51.65 
13 51.88 
15 52.1 
17 52.32 
19 52.55 
21 52.78 
23 53.01 
25 53.24 

 
 
 
 
 
 

5 9 13 17 21 25
51

51.45

51.9

52.35

52.8

53.25

h  [W/m2-C]

tim
e 

 [s
]

 



 

PROPRIETARY MATERIAL. © 2008 The McGraw-Hill Companies, Inc.  Limited distribution permitted only to teachers and 
educators for course preparation.  If you are a student using this Manual, you are using it without permission. 

11-13

 

 
Tf [C] time [s] 

30 3.428 
40 7.728 
50 12.05 
60 16.39 
70 20.74 
80 25.12 
90 29.51 

100 33.92 
110 38.35 
120 42.8 
130 47.28 
140 51.76 
150 56.27 
160 60.8 
170 65.35 
180 69.92 
190 74.51 
200 79.12 
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11-24 Ball bearings leaving the oven at a uniform temperature of 900°C are exposed to air for a while 
before they are dropped into the water for quenching. The time they can stand in the air before their 
temperature falls below 850°C is to be determined. 
Assumptions 1 The bearings are spherical in shape with a radius of ro = 0.6 cm. 2 The thermal properties of 
the bearings are constant. 3 The heat transfer coefficient is constant and uniform over the entire surface. 4 
The Biot number is Bi < 0.1 so that the lumped system analysis is applicable (this assumption will be 
verified). 
Properties The thermal conductivity, density, and specific heat of the bearings are given to be k = 15.1 
W/m.°C, ρ = 8085 kg/m3, and cp = 0.480 kJ/kg.°F. 
Analysis The characteristic length of the steel ball bearings and Biot number are 
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Therefore, the lumped system analysis is applicable. 
Then the allowable time is determined to be 
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The result indicates that the ball bearing can stay in the air about 4 s before being dropped into the water. 

Steel balls 
 900°C 

Air, 30°C 
Furnace 
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11-25 A number of carbon steel balls are to be annealed by heating them first and then allowing them to 
cool slowly in ambient air at a specified rate. The time of annealing and the total rate of heat transfer from 
the balls to the ambient air are to be determined. 
Assumptions 1 The balls are spherical in shape with a radius of ro = 4 mm. 2 The thermal properties of the 
balls are constant. 3 The heat transfer coefficient is constant and uniform over the entire surface.  4 The 
Biot number is Bi < 0.1 so that the lumped system analysis is applicable (this assumption will be verified). 
Properties The thermal conductivity, density, and specific heat of the balls are given to be k = 54 W/m.°C, 
ρ = 7833 kg/m3, and cp = 0.465 kJ/kg.°C. 
Analysis  The characteristic length of the balls and the Biot number are 

1.0 0018.0
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Therefore, the lumped system analysis is applicable. 
Then the time for the annealing process is 
determined to be  
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The amount of heat transfer from a single ball is 

 
ball)(per  kJ 0.781 = J 781C)100900)(CJ/kg. 465)(kg 0021.0(][

kg 0021.0
6

m) 008.0()kg/m 7833(
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Then the total rate of heat transfer from the balls to the ambient air becomes     

  W543==×== kJ/h 953,1)kJ/ball 781.0(balls/h) 2500(ballQnQ &&  

Steel balls 
 900°C 

Air, 35°C 
Furnace 
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11-26 EES Prob. 11-25 is reconsidered. The effect of the initial temperature of the balls on the annealing 
time and the total rate of heat transfer is to be investigated.  
Analysis The problem is solved using EES, and the solution is given below. 
 

"GIVEN" 
D=0.008 [m];   T_i=900 [C] 
T_f=100 [C];   T_infinity=35 [C] 
h=75 [W/m^2-C];   n_dot_ball=2500 [1/h] 
 
"PROPERTIES" 
rho=7833 [kg/m^3];   k=54 [W/m-C] 
c_p=465 [J/kg-C];   alpha=1.474E-6 [m^2/s] 
 
"ANALYSIS" 
A=pi*D^2 
V=pi*D^3/6 
L_c=V/A 
Bi=(h*L_c)/k "if Bi < 0.1, the lumped sytem analysis is applicable" 
b=(h*A)/(rho*c_p*V) 
(T_f-T_infinity)/(T_i-T_infinity)=exp(-b*time) 
m=rho*V 
Q=m*c_p*(T_i-T_f) 
Q_dot=n_dot_ball*Q*Convert(J/h, W) 
 

Ti [C] time [s] Q [W] 
500 127.4 271.2 
550 134 305.1 
600 140 339 
650 145.5 372.9 
700 150.6 406.9 
750 155.3 440.8 
800 159.6 474.7 
850 163.7 508.6 
900 167.6 542.5 
950 171.2 576.4 
1000 174.7 610.3 
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11-27 An electronic device is on for 5 minutes, and off for several hours. The temperature of the device at 
the end of the 5-min operating period is to be determined for the cases of operation with and without a heat 
sink.  
Assumptions 1 The device and the heat sink are isothermal. 2 The thermal properties of the device and of 
the sink are constant.  3 The heat transfer coefficient is constant and uniform over the entire surface. 
Properties The specific heat of the device is given to be cp = 850 J/kg.°C. The specific heat of the 
aluminum sink is  903 J/kg.°C (Table A-24), but can be taken to be 850 J/kg.°C for simplicity in analysis. 
Analysis (a) Approximate solution 
This problem can be solved approximately by using an average temperature 
for the device when evaluating the heat loss. An energy balance on the device 
can be expressed as 

 devicegenerationoutdevicegenerationoutin   TmctEtQEEEE pΔ=Δ+Δ−⎯→⎯Δ=+− &&  

or, )(
2generation ∞∞

∞ −=Δ⎟⎟
⎠
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TT
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Substituting the given values, 

     C)25)(CJ/kg. 850)(kg 02.0()s 605(C
2
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°−× TT  

which gives       T = 363.6°C 
 If the device were attached to an aluminum heat sink, the temperature of the device would be 
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which gives T = 54.7°C 
Note that the temperature of the electronic device drops considerably as a result of attaching it to a heat 
sink. 
(b) Exact solution 
This problem can be solved exactly by obtaining the differential equation from an energy balance on the 
device for a differential time interval dt. We will get 
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It can be solved to give 
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Substituting the known quantities and solving for t gives 363.4°C for the first case and 54.6°C for the 
second case, which are practically identical to the results obtained from the approximate analysis. 

Electronic 
device 
20 W 
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Transient Heat Conduction in Large Plane Walls, Long Cylinders, and Spheres with Spatial 
Effects 
 
11-28C A cylinder whose diameter is small relative to its length can be treated as an infinitely long 
cylinder. When the diameter and length of the cylinder are comparable, it is not proper to treat the cylinder 
as being infinitely long. It is also not proper to use this model when finding the temperatures near the 
bottom or top surfaces of a cylinder since heat transfer at those locations can be two-dimensional. 
 
11-29C Yes. A plane wall whose one side is insulated is equivalent to a plane wall that is twice as thick 
and is exposed to convection from both sides. The midplane in the latter case will behave like an insulated 
surface because of thermal symmetry. 
 
11-30C The solution for determination of the one-dimensional transient temperature distribution involves 
many variables that make the graphical representation of the results impractical. In order to reduce the 
number of parameters, some variables are grouped into dimensionless quantities. 
 
11-31C The Fourier number is a measure of heat conducted through a body relative to the heat stored. 
Thus a large value of Fourier number indicates faster propagation of heat through body. Since Fourier 
number is proportional to time, doubling the time will also double the Fourier number. 
 
11-32C This case can be handled by setting the heat transfer coefficient h to infinity ∞  since the 
temperature of the surrounding medium in this case becomes equivalent to the surface temperature.   
 
11-33C The maximum possible amount of heat transfer will occur when the temperature of the body 
reaches the temperature of the medium, and can be determined from )(max ip TTmcQ −= ∞ . 

 
11-34C When the Biot number is less than 0.1, the temperature of the sphere will be nearly uniform at all 
times. Therefore, it is more convenient to use the lumped system analysis in this case. 
 
 
 
11-35 A student calculates the total heat transfer from a spherical copper ball. It is to be determined 
whether his/her result is reasonable. 
Assumptions The thermal properties of the copper ball are constant at room temperature. 
Properties The density and specific heat of the copper ball are ρ = 8933 kg/m3, and cp = 0.385 kJ/kg.°C 
(Table A-24). 
Analysis The mass of the copper ball and the maximum 
amount of heat transfer from the copper ball are 

kJ 1838C)25200)(CkJ/kg. 385.0)(kg 28.27(][

kg 28.27
6

m) 18.0(
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Discussion The student's result of 3150 kJ is not reasonable since it is 
greater than the maximum possible amount of heat transfer. 

Copper 
ball, 200°C 
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11-36 Tomatoes are placed into cold water to cool them. The heat transfer coefficient and the amount of 
heat transfer are to be determined. 
Assumptions 1 The tomatoes are spherical in shape. 2 Heat conduction in the tomatoes is one-dimensional 
because of symmetry about the midpoint. 3 The thermal properties of the tomatoes are constant. 4 The heat 
transfer coefficient is constant and uniform over the entire surface. 5 The Fourier number is τ > 0.2 so that 
the one-term approximate solutions (or the transient temperature charts) are applicable (this assumption 
will be verified). 
Properties The properties of the tomatoes are given to be k = 0.59 W/m.°C, α = 0.141×10-6 m2/s, ρ = 999 
kg/m3 and cp = 3.99 kJ/kg.°C. 
Analysis The Fourier number is 

635.0
m) 04.0(
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2
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2
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××
==
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tατ  

which is greater than 0.2. Therefore one-term solution is 
applicable. The ratio of the dimensionless temperatures at 
the surface and center of the tomatoes are 
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Substituting, 
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From Table 11-2, the corresponding Biot number and the heat transfer coefficient are 
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The maximum amount of heat transfer is 
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Then the actual amount of heat transfer becomes 
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11-37 An egg is dropped into boiling water. The cooking time of the egg is to be determined.  
Assumptions 1 The egg is spherical in shape with a radius of ro = 2.75 cm. 2 Heat conduction in the egg is 
one-dimensional because of symmetry about the midpoint. 3 The thermal properties of the egg are constant. 
4 The heat transfer coefficient is constant and uniform over the entire surface. 4 The Fourier number is τ > 
0.2 so that the one-term approximate solutions (or the transient temperature charts) are applicable (this 
assumption will be verified). 
Properties The thermal conductivity and diffusivity of the eggs are given to be k = 0.6 W/m.°C and α = 
0.14×10-6 m2/s. 
Analysis The Biot number for this process is  

 2.64
)C W/m.6.0(

)m 0275.0)(C. W/m1400( 2
=

°
°

==
k

hr
Bi o  

The constants 11  and Aλ corresponding to this Biot 
number are, from Table 11-2, 
  9969.1   and   0877.3 11 == Aλ  

Then the Fourier number becomes 
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i
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Therefore, the one-term approximate solution (or the transient temperature charts) is applicable. Then the 
time required for the temperature of the center of the egg to reach 70°C is determined to be 

 min 17.8==
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s 1070
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11-38 EES Prob. 11-37 is reconsidered. The effect of the final center temperature of the egg on the time it 
will take for the center to reach this temperature is to be investigated.  
Analysis The problem is solved using EES, and the solution is given below. 
 
"GIVEN" 
D=0.055 [m] 
T_i=8 [C] 
T_o=70 [C] 
T_infinity=97 [C] 
h=1400 [W/m^2-C] 
 
"PROPERTIES" 
k=0.6 [W/m-C] 
alpha=0.14E-6 [m^2/s] 
 
"ANALYSIS" 
Bi=(h*r_o)/k 
r_o=D/2 
"From Table 11-2 corresponding to this Bi number, we read" 
lambda_1=1.9969  
A_1=3.0863 
(T_o-T_infinity)/(T_i-T_infinity)=A_1*exp(-lambda_1^2*tau) 
time=(tau*r_o^2)/alpha*Convert(s, min) 
 

To [C] time [min] 
50 39.86 
55 42.4 
60 45.26 
65 48.54 
70 52.38 
75 57 
80 62.82 
85 70.68 
90 82.85 
95 111.1 
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11-39 Large brass plates are heated in an oven. The surface temperature of the plates leaving the oven is to 
be determined. 
Assumptions 1 Heat conduction in the plate is one-dimensional since the plate is large relative to its 
thickness and there is thermal symmetry about the center plane. 3 The thermal properties of the plate are 
constant. 4 The heat transfer coefficient is constant and uniform over the entire surface.  5 The Fourier 
number is τ > 0.2 so that the one-term approximate solutions (or the transient temperature charts) are 
applicable (this assumption will be verified). 
Properties The properties of brass at room temperature are given to be k = 110 W/m.°C, α = 33.9×10-6 m2/s 
Analysis The Biot number for this process is  

 0109.0
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The constants 11  and Aλ corresponding to this Biot 
number are, from Table 11-2, 
  0018.1   and   1035.0 11 == Aλ  

The Fourier number is  
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Therefore, the one-term approximate solution (or the transient temperature charts) is applicable. Then the 
temperature at the surface of the plates becomes 
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Discussion This problem can be solved easily using the lumped system analysis since Bi < 0.1, and thus 
the lumped system analysis is applicable. It gives   
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which is almost identical to the result obtained above. 

Plates 
25°C
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11-40 EES Prob. 11-39 is reconsidered. The effects of the temperature of the oven and the heating time on 
the final surface temperature of the plates are to be investigated.  
Analysis The problem is solved using EES, and the solution is given below. 
 
"GIVEN" 
L=(0.03/2) [m] 
T_i=25 [C] 
T_infinity=700 [C] 
time=10 [min] 
h=80 [W/m^2-C] 
 
"PROPERTIES" 
k=110 [W/m-C] 
alpha=33.9E-6 [m^2/s] 
 
"ANALYSIS" 
Bi=(h*L)/k 
"From Table 11-2, corresponding to this Bi number, we read" 
lambda_1=0.1039  
A_1=1.0018 
tau=(alpha*time*Convert(min, s))/L^2 
(T_L-T_infinity)/(T_i-T_infinity)=A_1*exp(-lambda_1^2*tau)*Cos(lambda_1*L/L) 
 
 

T∞ [C] TL [C] 
500 321.6 
525 337.2 
550 352.9 
575 368.5 
600 384.1 
625 399.7 
650 415.3 
675 430.9 
700 446.5 
725 462.1 
750 477.8 
775 493.4 
800 509 
825 524.6 
850 540.2 
875 555.8 
900 571.4 
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time [min] TL [C] 

2 146.7 
4 244.8 
6 325.5 
8 391.9 

10 446.5 
12 491.5 
14 528.5 
16 558.9 
18 583.9 
20 604.5 
22 621.4 
24 635.4 
26 646.8 
28 656.2 
30 664 
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11-41 A long cylindrical shaft at 400°C is allowed to cool slowly. The center temperature and the heat 
transfer per unit length of the cylinder are to be determined. 
Assumptions 1 Heat conduction in the shaft is one-dimensional since it is long and it has thermal symmetry 
about the center line. 2 The thermal properties of the shaft are constant. 3 The heat transfer coefficient is 
constant and uniform over the entire surface. 4 The Fourier number is τ > 0.2 so that the one-term 
approximate solutions (or the transient temperature charts) are applicable (this assumption will be verified). 
Properties The properties of stainless steel 304 at room temperature are given to be k = 14.9 W/m.°C, ρ = 
7900 kg/m3, cp = 477 J/kg.°C, α = 3.95×10-6 m2/s 
Analysis  First the Biot number is calculated to be  

 705.0
)C W/m.9.14(

)m 175.0)(C. W/m60( 2
=

°
°

==
k

hr
Bi o  

The constants 11  and Aλ corresponding to this 
Biot number are, from Table 11-2, 
  1548.1   and   0904.1 11 == Aλ  

The Fourier number is  

 1548.0
m) 175.0(

s) 60/s)(20m 1095.3(
2
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2
=

××
==

−

L
tατ  

which is very close to the value of 0.2. Therefore, the one-term approximate solution (or the transient 
temperature charts) can still be used, with the understanding that the error involved will be a little more 
than 2 percent. Then the temperature at the center of the shaft becomes 
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The maximum heat can be transferred from the cylinder per meter of its length is 
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Once the constant 1J = 0.4679 is determined from Table 11-3 corresponding to the constant 1λ =1.0904, 
the actual heat transfer becomes 
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11-42 EES Prob. 11-41 is reconsidered. The effect of the cooling time on the final center temperature of the 
shaft and the amount of heat transfer is to be investigated.  
Analysis The problem is solved using EES, and the solution is given below. 
 
"GIVEN" 
r_o=(0.35/2) [m] 
T_i=400 [C]  
T_infinity=150 [C] 
h=60 [W/m^2-C] 
time=20 [min] 
 
 "PROPERTIES" 
k=14.9 [W/m-C]  
rho=7900 [kg/m^3] 
c_p=477 [J/kg-C] 
alpha=3.95E-6 [m^2/s] 
 
"ANALYSIS" 
Bi=(h*r_o)/k 
"From Table 11-2 corresponding to this Bi number, we read" 
lambda_1=1.0935  
A_1=1.1558 
J_1=0.4709 "From Table 11-3, corresponding to lambda_1" 
tau=(alpha*time*Convert(min, s))/r_o^2 
(T_o-T_infinity)/(T_i-T_infinity)=A_1*exp(-lambda_1^2*tau) 
L=1 "[m], 1 m length of the cylinder is considered" 
V=pi*r_o^2*L 
m=rho*V 
Q_max=m*c_p*(T_i-T_infinity)*Convert(J, kJ) 
Q/Q_max=1-2*(T_o-T_infinity)/(T_i-T_infinity)*J_1/lambda_1 
 
 
 

time 
[min] 

To  
[C] 

Q  
[kJ] 

5 425.9 4491 
10 413.4 8386 
15 401.5 12105 
20 390.1 15656 
25 379.3 19046 
30 368.9 22283 
35 359 25374 
40 349.6 28325 
45 340.5 31142 
50 331.9 33832 
55 323.7 36401 
60 315.8 38853 
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11-43E Long cylindrical steel rods are heat-treated in an oven. Their centerline temperature when they 
leave the oven is to be determined. 
Assumptions 1 Heat conduction in the rods is one-dimensional since the rods are long and they have 
thermal symmetry about the center line. 2 The thermal properties of the rod are constant. 3 The heat 
transfer coefficient is constant and uniform over the entire surface. 4 The Fourier number is τ > 0.2 so that 
the one-term approximate solutions (or the transient temperature charts) are applicable (this assumption 
will be verified). 
Properties The properties of AISI stainless steel rods are given to be k = 7.74 Btu/h.ft.°F, α = 0.135 ft2/h. 
Analysis  The time the steel rods stays in the oven can be determined from 

 s 180=min 3
ft/min 7

ft 21
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===t  

 The Biot number is   
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The constants 11  and Aλ corresponding to this Biot number are, from Table 11-2, 

  0996.1   and   8790.0 11 == Aλ  

The Fourier number is  
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Then the temperature at the center of the rods becomes 
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11-44 Steaks are cooled by passing them through a refrigeration room. The time of cooling is to be 
determined. 
Assumptions 1 Heat conduction in the steaks is one-dimensional since the steaks are large relative to their 
thickness and there is thermal symmetry about the center plane. 3 The thermal properties of the steaks are 
constant. 4 The heat transfer coefficient is constant and uniform over the entire surface. 5 The Fourier 
number is τ > 0.2 so that the one-term approximate solutions (or the transient temperature charts) are 
applicable (this assumption will be verified). 
Properties The properties of steaks are given to be k = 0.45 W/m.°C and  α = 0.91×10-7 m2/s 
Analysis The Biot number is   
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The constants 11  and Aλ corresponding to this 
Biot number are, from Table 11-2, 
  0311.1   and   4328.0 11 == Aλ  

The Fourier number is  

2.0085.5)4328.0cos()0311.1(
)11(25
)11(2

)/cos(
),(

2

2
1

)4328.0(

11

>=⎯→⎯=
−−
−−

=
−
−

−

−

∞

∞

τ

λ

τ

τλ

e

LLeA
TT

TtLT

i  

Therefore, the one-term approximate solution (or the transient temperature charts) is applicable. Then the 
length of time for the steaks to be kept in the refrigerator is determined to be 
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11-45 A long cylindrical wood log is exposed to hot gases in a fireplace. The time for the ignition of the 
wood is to be determined. 
Assumptions 1 Heat conduction in the wood is one-dimensional since it is long and it has thermal 
symmetry about the center line. 2 The thermal properties of the wood are constant. 3 The heat transfer 
coefficient is constant and uniform over the entire surface. 4 The Fourier number is τ > 0.2 so that the one-
term approximate solutions (or the transient temperature charts) are applicable (this assumption will be 
verified). 
Properties The properties of wood are given to be k = 0.17 W/m.°C, α = 1.28×10-7 m2/s 
Analysis  The Biot number is  
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The constants 11  and Aλ corresponding to this 
Biot number are, from Table 11-2, 
  4698.1   and   9081.1 11 == Aλ  

Once the constant J0  is determined from Table 11-3 corresponding 
to the constant λ1 =1.9081, the Fourier number is determined to be  
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which is not above the value of 0.2 but it is close. We use one-term approximate solution (or the transient 
temperature charts) knowing that the result may be somewhat in error. Then the length of time before the 
log ignites is 
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11-46 A rib is roasted in an oven. The heat transfer coefficient at the surface of the rib, the temperature of the outer 
surface of the rib and the amount of heat transfer when it is rare done are to be determined. The time it will take to 
roast this rib to medium level is also to be determined. 
Assumptions 1 The rib is a homogeneous spherical object. 2 Heat conduction in the rib is one-dimensional because of 
symmetry about the midpoint. 3 The thermal properties of the rib are constant. 4 The heat transfer coefficient is 
constant and uniform over the entire surface. 5 The Fourier number is τ > 0.2 so that the one-term approximate 
solutions (or the transient temperature charts) are applicable (this assumption will be verified). 
Properties The properties of the rib are given to be k = 0.45 W/m.°C, ρ = 1200 kg/m3, cp = 4.1 kJ/kg.°C, and α = 
0.91×10-7 m2/s. 
Analysis (a) The radius of the roast is determined to be 
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The Fourier number is 
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which is somewhat below the value of 0.2. Therefore, the one-term approximate solution (or the transient temperature 
charts) can still be used, with the understanding that the error involved will be a little more than 2 percent. Then the 
one-term solution can be written in the form 
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It is determined from Table 11-2 by trial and error that this equation is satisfied when Bi = 30, which  corresponds to   
9898.1   and   0372.3 11 == Aλ . Then the heat transfer coefficient can be determined from 
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This value seems to be larger than expected for problems of this kind. This is probably due to the Fourier number being 
less than 0.2. 
(b) The temperature at the surface of the rib is 
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(c) The maximum possible heat transfer is 
 kJ 2080C)5.4163)(CkJ/kg. 1.4)(kg 2.3()(max =°−°=−= ∞ ip TTmcQ  

Then the actual amount of heat transfer becomes 
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(d) The cooking time for medium-done rib is determined to be 
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This result is close to the listed value of 3 hours and 20 minutes. The difference between the two results is due to the 
Fourier number being less than 0.2 and thus the error in the one-term approximation.  
Discussion  The temperature of the outer parts of the rib is greater than that of the inner parts of the rib after it is taken 
out of the oven. Therefore, there will be a heat transfer from outer parts of the rib to the inner parts as a result of this 
temperature difference. The recommendation is logical. 

Oven 
163°C 

Rib 
4.5°C 
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11-47 A rib is roasted in an oven. The heat transfer coefficient at the surface of the rib, the temperature of the outer 
surface of the rib and the amount of heat transfer when it is well-done are to be determined. The time it will take to 
roast this rib to medium level is also to be determined. 
Assumptions 1 The rib is a homogeneous spherical object. 2 Heat conduction in the rib is one-dimensional because of 
symmetry about the midpoint. 3 The thermal properties of the rib are constant. 4 The heat transfer coefficient is 
constant and uniform over the entire surface. 5 The Fourier number is τ > 0.2 so that the one-term approximate 
solutions (or the transient temperature charts) are applicable (this assumption will be verified). 
Properties The properties of the rib are given to be k = 0.45 W/m.°C, ρ = 1200 kg/m3, cp = 4.1 kJ/kg.°C, and α = 
0.91×10-7 m2/s 
Analysis (a) The radius of the rib is determined to be 
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The Fourier number is 
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which is somewhat below the value of 0.2. Therefore, the one-term approximate solution (or the transient temperature 
charts) can still be used, with the understanding that the error involved will be a little more than 2 percent. Then the 
one-term solution formulation can be written in the form 
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It is determined from Table 11-2 by trial and error that this equation is satisfied when Bi = 4.3, which  corresponds to 
7402.1   and   4900.2 11 == Aλ . Then the heat transfer coefficient can be determined from.  

  C. W/m22.5 2 °=
°

==⎯→⎯=
)m 08603.0(

)3.4)(C W/m.45.0(

o

o

r
kBih

k
hr

Bi  

(b) The temperature at the surface of the rib is 
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(c) The maximum possible heat transfer is 
 kJ 2080C)5.4163)(CkJ/kg. 1.4)(kg 2.3()(max =°−°=−= ∞ ip TTmcQ  

Then the actual amount of heat transfer becomes 
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(d) The cooking time for medium-done rib is determined to be 
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This result is close to the listed value of 4 hours and 15 minutes. The difference between the two results is probably 
due to the Fourier number being less than 0.2 and thus the error in the one-term approximation.  
Discussion The temperature of the outer parts of the rib is greater than that of the inner parts of the rib after it is taken 
out of the oven. Therefore, there will be a heat transfer from outer parts of the rib to the inner parts as a result of this 
temperature difference. The recommendation is logical. 

Oven 
163°C 

Rib 
4.5°C 
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11-48 An egg is dropped into boiling water. The cooking time of the egg is to be determined. 
Assumptions 1 The egg is spherical in shape with a radius of r0 = 2.75 cm. 2 Heat conduction in the egg is 
one-dimensional because of symmetry about the midpoint. 3 The thermal properties of the egg are constant. 
4 The heat transfer coefficient is constant and uniform over the entire surface. 5 The Fourier number is τ > 
0.2 so that the one-term approximate solutions (or the transient temperature charts) are applicable (this 
assumption will be verified). 
Properties The thermal conductivity and diffusivity of the eggs can be approximated by those of water at 
room temperature to be  k = 0.607 W/m.°C,  α pck ρ/= = 0.146×10-6 m2/s (Table A-15). 

Analysis The Biot number is  
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The constants 11  and Aλ corresponding to this 
Biot number are, from Table 11-2, 
  9925.1   and   0533.3 11 == Aλ  

Then the Fourier number and the time period become  
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which is somewhat below the value of 0.2. Therefore, the one-term approximate solution (or the transient 
temperature charts) can still be used, with the understanding that the error involved will be a little more 
than 2 percent. Then the length of time for the egg to be kept in boiling water is determined to be 
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11-49 An egg is cooked in boiling water. The cooking time of the egg is to be determined for a location at 
1610-m elevation. 
Assumptions 1 The egg is spherical in shape with a radius of ro = 2.75 cm. 2 Heat conduction in the egg is 
one-dimensional because of symmetry about the midpoint. 3 The thermal properties of the egg and heat 
transfer coefficient are constant. 4 The heat transfer coefficient is constant and uniform over the entire 
surface. 5 The Fourier number is τ > 0.2 so that the one-term approximate solutions (or the transient 
temperature charts) are applicable (this assumption will be verified). 
Properties The thermal conductivity and diffusivity 
of the eggs can be approximated by those of water at 
room temperature to be  k = 0.607 W/m.°C,  
α pck ρ/= = 0.146×10-6 m2/s (Table A-15). 

Analysis The Biot number is 
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The constants 11  and Aλ corresponding to this 
Biot number are, from Table 11-2, 
  9925.1   and   0533.3 11 == Aλ  

Then the Fourier number and the time period become  
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i
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which is somewhat below the value of 0.2. Therefore, the one-term approximate solution (or the transient 
temperature charts) can still be used, with the understanding that the error involved will be a little more 
than 2 percent. Then the length of time for the egg to be kept in boiling water is determined to be 

 min 14.9==
×

==
−

s 895
/s)m 10146.0(

m) 0275.0)(1727.0(
26

22

α
τ ort  

Water 
94.4°C 

Egg 
Ti = 8°C 
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11-50 A hot dog is dropped into boiling water, and temperature measurements are taken at certain time 
intervals. The thermal diffusivity and thermal conductivity of the hot dog and the convection heat transfer 
coefficient are to be determined. 
Assumptions 1 Heat conduction in the hot dog is one-dimensional since it is long and it has thermal 
symmetry about the centerline. 2 The thermal properties of the hot dog are constant. 3 The heat transfer 
coefficient is constant and uniform over the entire surface. 4 The Fourier number is τ > 0.2 so that the one-
term approximate solutions (or the transient temperature charts) are applicable (this assumption will be 
verified). 
Properties The properties of hot dog available are given to be ρ = 980 kg/m3 and cp = 3900 J/kg.°C. 
Analysis (a) From Fig. 11-16b we have 
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The Fourier number is determined from Fig. 11-16a to be 
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The thermal diffusivity of the hot dog is determined to be 

 /sm 102.017 27−×===⎯→⎯=
s 120

m) 011.0)(2.0(2.0
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αα  

(b) The thermal conductivity of the hot dog is determined from 

 C W/m.0.771 °=°×== − C)J/kg. )(3900kg/m /s)(980m 10017.2( 327
pck αρ  

(c) From part (a) we have 15.01
==

ohr
k

Bi
. Then, 

  m 0.00165m) 011.0)(15.0(15.0 === orh
k   

Therefore, the heat transfer coefficient is 

 C. W/m467 2 °=
°

=⎯→⎯=
m 0.00165

C W/m.771.000165.0 h
h
k   

Water
94°C

Hot dog 
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11-51 Using the data and the answers given in Prob. 11-50, the center and the surface temperatures of the 
hot dog 4 min after the start of the cooking and the amount of heat transferred to the hot dog are to be 
determined. 
Assumptions 1 Heat conduction in the hot dog is one-dimensional since it is long and it has thermal 
symmetry about the center line. 2 The thermal properties of the hot dog are constant. 3 The heat transfer 
coefficient is constant and uniform over the entire surface. 4 The Fourier number is τ > 0.2 so that the one-
term approximate solutions (or the transient temperature charts) are applicable (this assumption will be 
verified). 
Properties The properties of hot dog and the convection heat transfer coefficient are given or obtained in 
P11-50 to be  k = 0.771 W/m.°C, ρ = 980 kg/m3, cp = 3900 J/kg.°C, α = 2.017×10-7 m2/s, and h = 467 
W/m2.°C. 
Analysis The Biot number is 

  66.6
)C W/m.771.0(
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°
°

==
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hr
Bi o  

The constants 11  and Aλ corresponding to this 
Biot number are, from Table 11-2, 
  5357.1   and   0785.2 11 == Aλ  

The Fourier number is  
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Then the temperature at the center of the hot dog is determined to be 
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From Table 11-3 we read 0J =0.1789 corresponding to the constant 1λ =2.0785. Then the temperature at 
the surface of the hot dog becomes  
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The maximum possible amount of heat transfer is 

 
[ ]
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From Table 11-3 we read 1J = 0.5701 corresponding to the constant 1λ =2.0785. Then the actual heat 
transfer becomes 
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Water
94°C

Hot dog 
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11-52E Whole chickens are to be cooled in the racks of a large refrigerator. Heat transfer coefficient that 
will enable to meet temperature constraints of the chickens while keeping the refrigeration time to a 
minimum is to be determined. 
Assumptions 1 The chicken is a homogeneous spherical object. 2 Heat conduction in the chicken is one-
dimensional because of symmetry about the midpoint. 3 The thermal properties of the chicken are constant. 
4 The heat transfer coefficient is constant and uniform over the entire surface. 5 The Fourier number is τ > 
0.2 so that the one-term approximate solutions (or the transient temperature charts) are applicable (this 
assumption will be verified). 
Properties The properties of the chicken are given to be k = 0.26 Btu/h.ft.°F, ρ = 74.9 lbm/ft3, cp = 0.98 
Btu/lbm.°F, and α = 0.0035 ft2/h. 
Analysis The radius of the chicken is determined to be 
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From Fig. 11-17b we have 
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Then the heat transfer coefficients becomes 

 F.Btu/h.ft 0.516 2 °=
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==
ft) 2517.0(2
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Refrigerator 
T∞ = 5°F 

Chicken 
Ti = 65°F 
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11-53 A person puts apples into the freezer to cool them quickly. The center and surface temperatures of 
the apples, and the amount of heat transfer from each apple in 1 h are to be determined. 
Assumptions 1 The apples are spherical in shape with a diameter of 9 cm. 2 Heat conduction in the apples 
is one-dimensional because of symmetry about the midpoint. 3 The thermal properties of the apples are 
constant. 4 The heat transfer coefficient is constant and uniform over the entire surface. 5 The Fourier 
number is τ > 0.2 so that the one-term approximate solutions (or the transient temperature charts) are 
applicable (this assumption will be verified). 
Properties The properties of the apples are given to be k = 0.418 W/m.°C, ρ = 840 kg/m3, cp = 3.81 
kJ/kg.°C, and α = 1.3×10-7 m2/s. 
Analysis  The Biot number is  

 861.0
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The constants 11  and Aλ corresponding to this 
Biot number are, from Table 11-2, 
  2390.1   and   476.1 11 == Aλ  

The Fourier number is  
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Then the temperature at the center of the apples becomes 
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The temperature at the surface of the apples is 
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The maximum possible heat transfer is 
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Then the actual amount of heat transfer becomes 
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Apple 
Ti = 20°C 

Air 
T∞ = -15°C 
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11-54 EES Prob. 11-53 is reconsidered. The effect of the initial temperature of the apples on the final 
center and surface temperatures and the amount of heat transfer is to be investigated.  
Analysis The problem is solved using EES, and the solution is given below. 
 
"GIVEN" 
T_infinity=-15 [C] 
T_i=20 [C] 
h=8 [W/m^2-C] 
r_o=0.09/2 [m] 
time=1*3600 [s] 
 
"PROPERTIES" 
k=0.513 [W/m-C] 
rho=840 [kg/m^3] 
c_p=3.6 [kJ/kg-C] 
alpha=1.3E-7 [m^2/s] 
 
"ANALYSIS" 
Bi=(h*r_o)/k 
"From Table 11-2 corresponding to this Bi number, we read" 
lambda_1=1.3525 
A_1=1.1978 
tau=(alpha*time)/r_o^2 
(T_o-T_infinity)/(T_i-T_infinity)=A_1*exp(-lambda_1^2*tau) 
 
(T_r-T_infinity)/(T_i-T_infinity)=A_1*exp(-
lambda_1^2*tau)*Sin(lambda_1*r_o/r_o)/(lambda_1*r_o/r_o) 
 
V=4/3*pi*r_o^3 
m=rho*V 
Q_max=m*c_p*(T_i-T_infinity) 
Q/Q_max=1-3*(T_o-T_infinity)/(T_i-T_infinity)*(Sin(lambda_1)-
lambda_1*Cos(lambda_1))/lambda_1^3 
 
 

Ti [C] To [C] Tr [C] Q [kJ] 
2 -1.658 -5.369 6.861 
4 -0.08803 -4.236 7.668 
6 1.482 -3.103 8.476 
8 3.051 -1.97 9.283 
10 4.621 -0.8371 10.09 
12 6.191 0.296 10.9 
14 7.76 1.429 11.7 
16 9.33 2.562 12.51 
18 10.9 3.695 13.32 
20 12.47 4.828 14.13 
22 14.04 5.961 14.93 
24 15.61 7.094 15.74 
26 17.18 8.227 16.55 
28 18.75 9.36 17.35 
30 20.32 10.49 18.16 
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11-55 An orange is exposed to very cold ambient air. It is to be determined whether the orange will freeze 
in 4 h in subfreezing temperatures. 
Assumptions 1 The orange is spherical in shape with a diameter of 8 cm. 2 Heat conduction in the orange 
is one-dimensional because of symmetry about the midpoint. 3 The thermal properties of the orange are 
constant, and are those of water. 4 The heat transfer coefficient is constant and uniform over the entire 
surface. 5 The Fourier number is τ > 0.2 so that the one-term approximate solutions (or the transient 
temperature charts) are applicable (this assumption will be verified). 
Properties The properties of the orange are approximated by those of water at the average temperature of 
about 5°C, k = 0.571 W/m.°C and /sm 10136.0)42059.999/(571.0/ 26−×=×== pck ρα  (Table A-15). 

Analysis  The Biot number is 
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The constants 11  and Aλ corresponding to this 
Biot number are, from Table 11-2, 
  2732.1   and   5708.1 11 == Aλ  

The Fourier number is  
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Therefore, the one-term approximate solution (or the transient temperature charts) is applicable. Then the 
temperature at the surface of the oranges becomes 

 
C 5.2 - °=⎯→⎯=

−−
−−

===
−
−

= −−

∞

∞

),(0396.0
)6(15

)6(),(

0396.0
5708.1

)rad 5708.1sin()2732.1(
/

)/sin(),(
),( )224.1()5708.1(

1

1
1

22
1

trT
trT

e
rr

rr
eA

TT
TtrT

tr

o
o

oo

oo

i

o
spho λ

λ
θ τλ

 

which is less than 0°C. Therefore, the oranges will freeze. 

Orange 
Ti = 15°C 

Air 
T∞ = -6°C 
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11-56 A hot baked potato is taken out of the oven and wrapped so that no heat is lost from it. The time the 
potato is baked in the oven and the final equilibrium temperature of the potato after it is wrapped are to be 
determined. 
Assumptions 1 The potato is spherical in shape with a diameter of 9 cm. 2 Heat conduction in the potato is 
one-dimensional because of symmetry about the midpoint. 3 The thermal properties of the potato are 
constant. 4 The heat transfer coefficient is constant and uniform over the entire surface. 5 The Fourier 
number is τ > 0.2 so that the one-term approximate solutions (or the transient temperature charts) are 
applicable (this assumption will be verified). 
Properties The properties of the potato are given to be k = 0.6 
W/m.°C, ρ = 1100 kg/m3, cp = 3.9 kJ/kg.°C, and α = 1.4×10-7 
m2/s. 
Analysis (a) The Biot number is 

 3
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Bi o  

The constants 11  and Aλ corresponding to this 
Biot number are, from Table 11-2, 
  6227.1   and   2889.2 11 == Aλ  

Then the Fourier number and the time period become  
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which is not greater than 0.2 but it is close. We may use one-term approximation knowing that the result 
may be somewhat in error. Then the baking time of the potatoes is determined to be 
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(b) The maximum amount of heat transfer is 
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Then the actual amount of heat transfer becomes 
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The final equilibrium temperature of the potato after it is wrapped is 

 C114°=
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Oven 
T∞ = 170°C 

Potato 
T0 = 70°C 
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11-57  The center temperature of potatoes is to be lowered to 6°C during cooling. The cooling time and if 
any part of the potatoes will suffer chilling injury during this cooling process are to be determined.   
Assumptions 1 The potatoes are spherical in shape with a radius of r0 = 3 cm. 2 Heat conduction in the 
potato is one-dimensional in the radial direction because of the symmetry about the midpoint. 3 The 
thermal properties of the potato are constant. 4 The heat transfer coefficient is constant and uniform over 
the entire surface.  5 The Fourier number is τ > 0.2 so that the one-term approximate solutions (or the 
transient temperature charts) are applicable (this assumption will be verified). 
Properties The thermal conductivity and thermal diffusivity of potatoes are given to be k = 0.50 W/m⋅°C 
and α = 0.13×10-6 m2/s. 
Analysis First we find the Biot number:  
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From Table 11-2 we read, for a sphere,  λ1 = 1.635 
and A1 = 1.302. Substituting these values into the 
one-term solution  gives 
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which is greater than 0.2 and thus the one-term solution is applicable. Then the cooling time becomes 
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The lowest temperature during cooling will occur on the surface (r/r0  = 1), and is determined to be  
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Substituting, C4.44=)(    
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which is above the temperature range of 3 to 4 °C for chilling injury for potatoes.  Therefore, no part of 
the potatoes will experience chilling injury during this cooling process.  
Alternative solution We could also solve this problem using transient temperature charts as follows:  
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The surface temperature is determined from   
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which gives  C4.4)26(6.02)(6.0 °=−+=−+= ∞∞ TTTT osurface     

The slight difference between the two results is due to the reading error of the charts.   

Potato 
Ti = 25°C 

Air 
2°C 

4 m/s 
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11-58E  The center temperature of oranges is to be lowered to 40°F during cooling. The cooling time and if 
any part of the oranges will freeze during this cooling process are to be determined.   
Assumptions 1 The oranges are spherical in shape with a radius of ro =1.25 in = 0.1042 ft. 2 Heat 
conduction in the orange is one-dimensional in the radial direction because of the symmetry about the 
midpoint. 3 The thermal properties of the orange are constant. 4 The heat transfer coefficient is constant 
and uniform over the entire surface.  5 The Fourier number is τ > 0.2 so that the one-term approximate 
solutions (or the transient temperature charts) are applicable (this assumption will be verified). 
Properties The thermal conductivity and thermal diffusivity of oranges are given to be k = 0.26 Btu/h⋅ft⋅°F 
and α = 1.4×10-6 ft2/s. 
Analysis First we find the Biot number:  

            843.1
FBtu/h.ft. 0.26

)ft 12/25.1(F).Btu/h.ft 6.4(
Bi

2
=

°
°

==
k

hro     

From Table 11-2 we read, for a sphere, λ1 = 1.9569 and A1 = 
1.447. Substituting these values into the one-term solution  gives 

 426.0=    447.1
2578
2540    
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1 )9569.1(

1
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0 τθ ττλ →=
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= −−

∞

∞ eeA
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which is greater than 0.2 and thus the one-term solution is applicable. 
Then the cooling time becomes 

         min 55.0==
×

==→= s 3302
s/ft 101.4
ft) 12/25.1)(426.0(
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The lowest temperature during cooling will occur on the surface (r/r0  = 1), and is determined to be  
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/
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∞
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Substituting, F32.1=)(    
1.9569

rad) 9569.1sin(
2578
2540

2578
25)(
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rT
 

which is above the freezing temperature of 31°F for oranges.  Therefore, no part of the oranges will freeze 
during this cooling process.  
Alternative solution We could also solve this problem using transient temperature charts as follows:  

 17a)-11 (Fig.     43.0
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Therefore,    min 55.6s 3333
/sft101.4

5/12ft)(0.43)(1.2
26
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×
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τ ort  

The lowest temperature during cooling will occur on the surface (r/ro =1) of the oranges is determined to 
be  

 17b)11 (Fig.     0.45
)(

1
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o
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which gives  F31.8)2540(45.025)(45.0 0 °=−+=−+= ∞∞ TTTTsurface  

The slight difference between the two results is due to the reading error of the charts.   

Orange 
D = 2.5 in 
85% water 
Ti = 78°F 

Air 
25°F 
1 ft/s 
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11-59  The center temperature of a beef carcass is to be lowered to 4°C during cooling. The cooling time 
and if any part of the carcass will suffer freezing injury during this cooling process are to be determined.   
Assumptions 1 The beef carcass can be approximated as a cylinder with insulated top and base surfaces 
having a radius of  ro  = 12 cm and a height of H  = 1.4 m. 2 Heat conduction in the carcass is one-
dimensional in the radial direction because of the symmetry about the centerline. 3 The thermal properties 
of the carcass are constant. 4 The heat transfer coefficient is constant and uniform over the entire surface.  
5 The Fourier number is τ > 0.2 so that the one-term approximate solutions (or the transient temperature 
charts) are applicable (this assumption will be verified). 
Properties The thermal conductivity and thermal diffusivity of carcass are given to be k = 0.47 W/m⋅°C 
and α = 0.13×10-6 m2/s. 
Analysis  First we find the Biot number:  

           62.5
C. W/m0.47

)m 12.0(C). W/m22(
Bi

2
=

°
°

==
k

hro     

From Table 11-2 we read, for a cylinder,  λ1 = 2.027 and A1 = 1.517. 
Substituting these values into the one-term solution gives 

   396.0=    517.1
)10(37
)10(4    
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1 )027.2(

1
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0 τθ ττλ →=
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∞ eeA
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which is greater than 0.2 and thus the one-term solution is applicable. 
Then the cooling time becomes 

         h 12.2==
×

==→= s 865,43
s/m 100.13

m) 12.0)(396.0(
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The lowest temperature during cooling will occur on the surface (r/ro  = 1), and is determined to be  
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Substituting, C-7.1=)(    0621.02084.02979.0)(
)10(37
)10(4

)10(37
)10()(
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orTJ
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λ  

which is below the freezing temperature of -1.7 °C.  Therefore, the outer part of the beef carcass will freeze 
during this cooling process.  
Alternative solution We could also solve this problem using transient temperature charts as follows:  

 )16a11 (Fig.     0.4
298.0
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)10(4

178.0
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Therefore,  h12.3s44,308
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The surface temperature is determined from   

 16b)11 (Fig.    17.0
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which gives  C6.7)]10(4[17.010)(17.0 0 °−=−−+−=−+= ∞∞ TTTTsurface     

The difference between the two results is due to the reading error of the charts.   

Beef 
37°C 

Air 
-10°C 

1.2 m/s 
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11-60 The center temperature of meat slabs is to be lowered to -18°C during cooling. The cooling time and 
the surface temperature of the slabs at the end of the cooling process are to be determined.   
Assumptions 1 The meat slabs can be approximated as very large plane walls of half-thickness L = 11.5 
cm. 2 Heat conduction in the meat slabs is one-dimensional because of the symmetry about the centerplane. 
3 The thermal properties of the meat slabs are constant. 4 The heat transfer coefficient is constant and 
uniform over the entire surface.  5 The Fourier number is τ > 0.2 so that the one-term approximate 
solutions (or the transient temperature charts) are applicable (this assumption will be verified). 6 The phase 
change effects are not considered, and thus the actual cooling time will be much longer than the value 
determined. 
Properties The thermal conductivity and thermal diffusivity of 
meat slabs are given to be k = 0.47 W/m⋅°C and α = 0.13×10-6 
m2/s. These properties will be used for both fresh and frozen meat. 
Analysis  First we find the Biot number:  

      89.4
C. W/m0.47

)m 115.0(C). W/m20(
Bi

2
=

°
°

==
k

hro     

From Table 11-2 we read, for a plane wall,  λ1 = 1.308 
and A1=1.239. Substituting these values into the one-
term solution gives 

         783.0=    239.1
)30(7

)30(18    
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1 )308.1(
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∞ eeA
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which is greater than 0.2 and thus the one-term solution is applicable. 
Then the cooling time becomes 

         h 22.1==
×

==→= s 650,79
s/m 100.13
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The  lowest temperature during cooling will occur on the surface (x/L  = 1), and is determined to be  
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Substituting, 
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which is close the temperature of the refrigerated air.  
Alternative solution We could also solve this problem using transient temperature charts as follows:  

 15a)11 (Fig.     75.0
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The surface temperature is determined from   
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which gives  C27.4)]30(18[22.030)(22.0 °−=−−−+−=−+= ∞∞ TTTT osurface     

The slight difference between the two results is due to the reading error of the charts.   

Air 
-30°C 

1.4 m/s 

Meat 
7°C 
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11-61E The center temperature of meat slabs is to be lowered to 36°F during 12-h of cooling. The average 
heat transfer coefficient during this cooling process is to be determined.   
Assumptions 1 The meat slabs can be approximated as very large plane walls of half-thickness L = 3-in. 2 
Heat conduction in the meat slabs is one-dimensional because of symmetry about the centerplane. 3 The 
thermal properties of the meat slabs are constant. 4 The heat transfer coefficient is constant and uniform 
over the entire surface.  5 The Fourier number is τ > 0.2 so that the one-term approximate solutions (or the 
transient temperature charts) are applicable (this assumption will be verified). 
Properties The thermal conductivity and thermal diffusivity 
of meat slabs are given to be k = 0.26 Btu/h⋅ft⋅°F and 
α=1.4×10-6 ft2/s. 
Analysis  The average heat transfer coefficient during this 
cooling process is determined from the transient 
temperature charts for a flat plate as follows: 

)15a11 (Fig.    7.01
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Therefore,     

FºBtu/h.ft². 1.5===
ft (3/12)
F)(1/0.7)Btu/h.ft.º(0.26

L
kBih  

Discussion We could avoid the uncertainty associated with the reading of the charts and obtain a more 
accurate result by using the one-term solution relation for an infinite plane wall, but it would require a trial 
and error approach since the Bi number is not known. 

Air 
23°F 

Meat 
50°F 
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11-62  Chickens are to be chilled by holding them in agitated brine for 2.75 h. The center and surface 
temperatures of the chickens are to be determined, and if any part of the chickens will freeze during this 
cooling process is to be assessed.   
Assumptions 1 The chickens are spherical in shape. 2 Heat conduction in the chickens is one-dimensional 
in the radial direction because of symmetry about the midpoint. 3 The thermal properties of the chickens 
are constant. 4 The heat transfer coefficient is constant and uniform over the entire surface.  5 The Fourier 
number is τ > 0.2 so that the one-term approximate solutions (or the transient temperature charts) are 
applicable (this assumption will be verified). 6 The phase change effects are not considered, and thus the 
actual the temperatures will be much higher than the values determined since a considerable part of the 
cooling process will occur during phase change (freezing of chicken). 
Properties The thermal conductivity, thermal diffusivity, and density of chickens are given to be k = 0.45 
W/m⋅°C, α = 0.13×10-6 m2/s, and ρ = 950 kg/ m3. These properties will be used for both fresh and frozen 
chicken. 
Analysis  We first find the volume and equivalent radius of the chickens: 
   cm³1789m³)g/(0.95g/c1700/ === ρmV  

   m 0753.0cm 53.7cm³ 1789
4
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==⎟
⎠
⎞

⎜
⎝
⎛=⎟
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Then the Biot and Fourier numbers become 
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Note that 2.02270.0 >=τ , and thus the one-term solution is applicable. From Table 11-2 we read, for a 
sphere,  λ1 = 3.094 and A1 = 1.998. Substituting these values into the one-term solution  gives 
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The lowest temperature during cooling will occur on the surface (r/ro  = 1), and is determined to be  
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Substituting, C6.9°−=→=
−−
−−

)(    
3.094
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o rT
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Most parts of chicken will freeze during this process since the freezing point of chicken is -2.8°C.  
Discussion  We could also solve this problem using transient temperature charts, but the data in this case 
falls at a point on the chart which is very difficult to read:   
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Brine 
-7°C 

 Chicken 
    Ti=15°C 
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Transient Heat Conduction in Semi-Infinite Solids 
 
11-63C A semi-infinite medium is an idealized body which has a single exposed plane surface and extends 
to infinity in all directions. The earth and thick walls can be considered to be semi-infinite media. 
 
11-64C A thick plane wall can be treated as a semi-infinite medium if all we are interested in is the 
variation of temperature in a region near one of the surfaces for a time period during which the temperature 
in the mid section of the wall does not experience any change. 
 
11-65C The total amount of heat transfer from a semi-infinite solid up to a specified time t0 can be 
determined by integration from 

          ∫ ∞−=
ot

dtTtTAhQ
0

]),0([  

where the surface temperature T(0, t) is obtained from Eq. 11-47 by substituting x = 0. 
 
 
 
 
 
 
11-66 The water pipes are buried in the ground to prevent freezing. The minimum burial depth at a 
particular location is to be determined. 
Assumptions 1 The temperature in the soil is affected by the thermal conditions at one surface only, and 
thus the soil can be considered to be a semi-infinite medium with a specified surface temperature. 2 The 
thermal properties of the soil are constant. 
Properties The thermal properties of the soil are given to be k = 0.35 W/m.°C and α = 0.15×10-6 m2/s. 
Analysis The length of time the snow pack stays on the ground is 

     s 105.184s/hr) 600hr/days)(3 days)(24 (60 6×==t  

The surface is kept at -8°C at all times. The depth at 
which freezing at 0°C occurs can be determined from 
the analytical solution, 
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Then from Table 11-4 we get       m 0.846=⎯→⎯= xx      4796.0
7636.1

 

Discussion The solution could also be determined using the chart, but it would be subject to reading error. 

Water pipe 

 Ts =-8°C 

Soil 
Ti = 8°C 
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11-67 An area is subjected to cold air for a 10-h period. The soil temperatures at distances 0, 10, 20, and 50 
cm from the earth’s surface are to be determined. 
Assumptions 1 The temperature in the soil is affected by the thermal conditions at one surface only, and 
thus the soil can be considered to be a semi-infinite medium with a specified surface temperature. 2 The 
thermal properties of the soil are constant. 
Properties The thermal properties of the soil are given to be k = 0.9 W/m.°C and α = 1.6×10-5 m2/s. 
Analysis The one-dimensional transient temperature distribution in the ground can be determined from  
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Then we conclude that the last term in the temperature distribution relation above must be zero regardless 
of x  despite the exponential term tending to infinity since (1) 4for     0)( >→ ηηerfc  (see Table 11-4) and 
(2) the term has to remain less than 1 to have physically meaningful solutions. That is,  
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Therefore, the temperature distribution relation simplifies to  
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Then the temperatures at 0, 10, 20, and 50 cm depth from the ground surface become 
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x = 0.1m:  
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x = 0.2 m:  
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x = 0.5 m:  
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Soil 
 Ti =10°C 

Winds 
T∞ =-10°C 
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11-68 EES Prob. 11-67 is reconsidered. The soil temperature as a function of the distance from the earth’s 
surface is to be plotted. 
Analysis The problem is solved using EES, and the solution is given below. 
 
"GIVEN" 
T_i=10 [C] 
T_infinity=-10 [C] 
h=40 [W/m^2-C] 
time=10*3600 [s] 
x=0.1 [m] 
 
"PROPERTIES" 
k=0.9 [W/m-C] 
alpha=1.6E-5 [m^2/s] 
 
"ANALYSIS" 
(T_x-T_i)/(T_infinity-T_i)=erfc(x/(2*sqrt(alpha*time)))-
exp((h*x)/k+(h^2*alpha*time)/k^2)*erfc(x/(2*sqrt(alpha*time))+(h*sqrt(alpha*time)/k)) 
 
 

x [m] Tx [C] 
0 -9.666 

0.05 -8.923 
0.1 -8.183 

0.15 -7.447 
0.2 -6.716 

0.25 -5.993 
0.3 -5.277 

0.35 -4.572 
0.4 -3.878 

0.45 -3.197 
0.5 -2.529 

0.55 -1.877 
0.6 -1.24 

0.65 -0.6207 
0.7 -0.01894 

0.75 0.5643 
0.8 1.128 

0.85 1.672 
0.9 2.196 

0.95 2.7 
1 3.183 
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11-69 An aluminum block is subjected to heat flux. The surface temperature of the block is to be 
determined.  
Assumptions 1 All heat flux is absorbed by the block. 2 Heat loss from the block is disregarded (and thus 
the result obtained is the maximum temperature). 3 The block is sufficiently thick to be treated as a semi-
infinite solid, and the properties of the block are constant. 
Properties Thermal conductivity and diffusivity of aluminum at room temperature are k = 237 kg/m3 and α 
= 97.1×10-6 m2/s. 
Analysis This is a transient conduction problem in a semi-infinite medium subjected to constant surface 
heat flux, and the surface temperature can be determined to be 

 C28.0s) 60/s)(30m 1071.9(4
C W/m237

 W/m4000C204 252
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××
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αt

k
q

TT s
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Then the temperature rise of the surface becomes 
 C8.0°=−=Δ 2028sT  

 
 
 
 
 
11-70 The contact surface temperatures when a bare footed person steps on aluminum and wood blocks are 
to be determined. 
Assumptions 1 Both bodies can be treated as the semi-infinite solids. 2 Heat loss from the solids is 
disregarded. 3 The properties of the solids are constant. 

Properties The pckρ  value is 24 kJ/m2⋅°C for aluminum, 0.38 kJ/m2⋅°C for wood, and 1.1 kJ/m2⋅°C for 

the human flesh. 
Analysis The surface temperature is determined from Eq. 11-49 to be 
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In the case of wood block, we obtain 
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11-71E The walls of a furnace made of concrete are exposed to hot gases at the inner surfaces. The time it 
will take for the temperature of the outer surface of the furnace to change is to be determined. 
Assumptions 1 The temperature in the wall is affected by the thermal conditions at inner surfaces only and 
the convection heat transfer coefficient inside is given to be very large. Therefore, the wall can be 
considered to be a semi-infinite medium with a specified surface temperature of 1800°F. 2 The thermal 
properties of the concrete wall are constant. 
Properties The thermal properties of the concrete are given to be         
k = 0.64 Btu/h.ft.°F and α = 0.023 ft2/h. 
Analysis The one-dimensional transient temperature distribution 
in the wall for that time period can be determined from  
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  (Table 11-4) 
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11-72 A thick wood slab is exposed to hot gases for a period of 5 minutes. It is to be determined whether 
the wood will ignite. 
Assumptions 1 The wood slab is treated as a semi-infinite medium subjected to convection at the exposed 
surface. 2 The thermal properties of the wood slab are constant. 3 The heat transfer coefficient is constant 
and uniform over the entire surface. 
Properties The thermal properties of the wood are k = 0.17 W/m.°C and α = 1.28×10-7 m2/s. 
Analysis The one-dimensional transient temperature distribution in the wood can be determined from  
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Noting that x = 0 at the surface and using 
Table 11-4 for erfc values, 
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Solving for T(x, t) gives 
 C360°=),( txT  
which is less than the ignition temperature of 450°C. Therefore, the wood will not ignite. 

1800°F

70°F

L =1.2 ft 

Q&  

Wall 

L=0.3 m

Wood 
slab 

Ti = 25°C  
Hot  

gases 
T∞ = 550°C
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Ice, 0°C 

Ice chest 
Hot water 

60°C 

11-73 The outer surfaces of a large cast iron container filled with ice are exposed to hot water. The time 
before the ice starts melting and the rate of heat transfer to the ice are to be determined. 
Assumptions 1 The temperature in the container walls is affected by the thermal conditions at outer 
surfaces only and the convection heat transfer coefficient outside is given to be very large. Therefore, the 
wall can be considered to be a semi-infinite medium with a specified surface temperature. 2 The thermal 
properties of the wall are constant. 
Properties The thermal properties of the cast iron are given to be  k = 52 W/m.°C and α = 1.70×10-5 m2/s. 
Analysis The one-dimensional transient temperature distribution in the wall for that time period can be 
determined from  
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The rate of heat transfer to the ice when 
steady operation conditions are reached 
can be determined by applying the 
thermal resistance network concept as 
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Transient Heat Conduction in Multidimensional Systems 
 
11-74C The product solution enables us to determine the dimensionless temperature of two- or three-
dimensional heat transfer problems as the product of dimensionless temperatures of one-dimensional heat 
transfer problems. The dimensionless temperature for a two-dimensional problem is determined by 
determining the dimensionless temperatures in both directions, and taking their product. 
 
11-75C The dimensionless temperature for a three-dimensional heat transfer is determined by determining 
the dimensionless temperatures of one-dimensional geometries whose intersection is the three dimensional 
geometry, and taking their product. 
 
11-76C This short cylinder is physically formed by the intersection of a long cylinder and a plane wall. The 
dimensionless temperatures at the center of plane wall and at the center of the cylinder are determined first. 
Their product yields the dimensionless temperature at the center of the short cylinder. 
 
11-77C The heat transfer in this short cylinder is one-dimensional since there is no heat transfer in the axial 
direction. The temperature will vary in the radial direction only. 
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11-78 A short cylinder is allowed to cool in atmospheric air. The temperatures at the centers of the cylinder 
and the top surface as well as the total heat transfer from the cylinder for 15 min of cooling are to be 
determined. 
Assumptions 1 Heat conduction in the short cylinder is two-dimensional, and thus the temperature varies in 
both the axial x- and the radial r- directions. 2 The thermal properties of the cylinder are constant. 3 The 
heat transfer coefficient is constant and uniform over the entire surface. 4 The Fourier number is τ > 0.2 so 
that the one-term approximate solutions (or the transient temperature charts) are applicable (this 
assumption will be verified). 

Properties The thermal properties of brass are given to  be  3kg/m 8530=ρ , CkJ/kg 389.0 °⋅=pc , 

C W/m110 °⋅=k , and /sm 1039.3 25−×=α . 
Analysis This short cylinder can physically be formed by the intersection of a long cylinder of radius D/2 = 
4 cm and a plane wall of thickness 2L = 15 cm. We measure x from the midplane. 
(a) The Biot number is calculated for the plane wall to be  

 02727.0
)C W/m.110(
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The constants 11  and Aλ corresponding to this 
Biot number are, from Table 11-2, 
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The Fourier number is  
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Therefore, the one-term approximate solution (or the transient temperature charts) is applicable. Then the 
dimensionless temperature at the center of the plane wall is determined from  
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We repeat the same calculations for the long cylinder, 

01455.0
)C W/m.110(

)m 04.0)(C. W/m40( 2
=

°
°

==
k

hr
Bi o  

 0036.1   and   1677.0 11 == Aλ  

 2.0069.19
m) 04.0(

s) 60/s)(15m 1039.3(
2

25

2
>=

××
==

−

or
tατ  

 587.0)0036.1( )069.19()1677.0(
1,

22
1 ===

−
−

= −−

∞

∞ eeA
TT
TT

i

o
cylo

τλθ  

Then the center temperature of the short cylinder becomes 
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(b) The center of the top surface of the cylinder is still at the center of the long cylinder (r = 0), but at the 
outer surface of the plane wall (x = L). Therefore, we first need to determine the dimensionless temperature 
at the surface of the wall. 

D0 = 8 cm 

L = 15 cm 

z 

Brass cylinder 
Ti = 150°C 

r 

Air 
T∞ = 20°C 
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Then the center temperature of the top surface of the cylinder becomes 
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(c) We first need to determine the maximum heat can be transferred from the cylinder 
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Then we determine the dimensionless heat transfer ratios for both geometries as 
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The heat transfer ratio for the short cylinder is 
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Then the total heat transfer from the short cylinder during the first 15 minutes of cooling becomes 
 kJ 160=== kJ) 325)(493.0(493.0 maxQQ  
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11-79 EES Prob. 11-78 is reconsidered. The effect of the cooling time on the center temperature of the 
cylinder, the center temperature of the top surface of the cylinder, and the total heat transfer is to be 
investigated. 
Analysis The problem is solved using EES, and the solution is given below. 
 
"GIVEN" 
D=0.08 [m] 
r_o=D/2 
height=0.15 [m] 
L=height/2 
T_i=150 [C] 
T_infinity=20 [C] 
h=40 [W/m^2-C] 
time=15 [min] 
 
"PROPERTIES" 
k=110 [W/m-C] 
rho=8530 [kg/m^3] 
c_p=0.389 [kJ/kg-C] 
alpha=3.39E-5 [m^2/s] 
 
"ANALYSIS" 
"(a)" 
"This short cylinder can physically be formed by the intersection of a long cylinder of radius r_o 
and a plane wall of thickness 2L" 
"For plane wall" 
Bi_w=(h*L)/k 
"From Table 11-2 corresponding to this Bi number, we read" 
lambda_1_w=0.1620 "w stands for wall" 
A_1_w=1.0045 
tau_w=(alpha*time*Convert(min, s))/L^2 
theta_o_w=A_1_w*exp(-lambda_1_w^2*tau_w) "theta_o_w=(T_o_w-T_infinity)/(T_i-T_infinity)" 
"For long cylinder" 
Bi_c=(h*r_o)/k "c stands for cylinder" 
"From Table 11-2 corresponding to this Bi number, we read" 
lambda_1_c=0.1677 
A_1_c=1.0036 
tau_c=(alpha*time*Convert(min, s))/r_o^2 
theta_o_c=A_1_c*exp(-lambda_1_c^2*tau_c) "theta_o_c=(T_o_c-T_infinity)/(T_i-T_infinity)" 
(T_o_o-T_infinity)/(T_i-T_infinity)=theta_o_w*theta_o_c "center temperature of short cylinder" 
"(b)" 
theta_L_w=A_1_w*exp(-lambda_1_w^2*tau_w)*Cos(lambda_1_w*L/L) "theta_L_w=(T_L_w-
T_infinity)/(T_i-T_infinity)" 
(T_L_o-T_infinity)/(T_i-T_infinity)=theta_L_w*theta_o_c "center temperature of the top surface" 
"(c)" 
V=pi*r_o^2*(2*L) 
m=rho*V 
Q_max=m*c_p*(T_i-T_infinity) 
Q_w=1-theta_o_w*Sin(lambda_1_w)/lambda_1_w "Q_w=(Q/Q_max)_w" 
Q_c=1-2*theta_o_c*J_1/lambda_1_c "Q_c=(Q/Q_max)_c" 
J_1=0.0835 "From Table 11-3, at lambda_1_c" 
Q/Q_max=Q_w+Q_c*(1-Q_w) "total heat transfer" 
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time [min] To,o [C] TL,o [C] Q [kJ] 

5 124.5 123.2 65.97 
10 103.4 102.3 118.5 
15 86.49 85.62 160.3 
20 73.03 72.33 193.7 
25 62.29 61.74 220.3 
30 53.73 53.29 241.6 
35 46.9 46.55 258.5 
40 41.45 41.17 272 
45 37.11 36.89 282.8 
50 33.65 33.47 291.4 
55 30.88 30.74 298.2 
60 28.68 28.57 303.7 
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11-80 A semi-infinite aluminum cylinder is cooled by water. The temperature at the center of the cylinder 5 
cm from the end surface is to be determined. 
Assumptions 1 Heat conduction in the semi-infinite cylinder is two-dimensional, and thus the temperature 
varies in both the axial x- and the radial r- directions. 2 The thermal properties of the cylinder are constant. 
3 The heat transfer coefficient is constant and uniform over the entire surface. 4 The Fourier number is τ > 
0.2 so that the one-term approximate solutions (or the transient temperature charts) are applicable (this 
assumption will be verified). 
Properties The thermal properties of aluminum are given to be  k = 237 W/m.°C and α = 9.71×10-5m2/s. 
Analysis This semi-infinite cylinder can physically be formed by the intersection of a long cylinder of 
radius ro = D/2 = 7.5 cm and a semi-infinite medium. The dimensionless temperature 5 cm from the surface 
of a semi-infinite medium is first determined from 
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The Biot number is calculated for the long cylinder to be  
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The constants 11  and Aλ corresponding to this 
Biot number are, from Table 11-2, 
 λ1 = 0.2948    and    A1 = 1.0110 
The Fourier number is  
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Therefore, the one-term approximate solution (or the transient temperature charts) is applicable. Then the 
dimensionless temperature at the center of the plane wall is determined from  
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The center temperature of the semi-infinite cylinder then becomes 
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11-81E A hot dog is dropped into boiling water. The center temperature of the hot dog is do be determined 
by treating hot dog as a finite cylinder and also as an infinitely long cylinder. 
Assumptions 1 When treating hot dog as a finite cylinder, heat conduction in the hot dog is two-
dimensional, and thus the temperature varies in both the axial x- and the radial r- directions. When treating 
hot dog as an infinitely long cylinder, heat conduction is one-dimensional in the radial r- direction. 2 The 
thermal properties of the hot dog are constant. 3 The heat transfer coefficient is constant and uniform over 
the entire surface. 4 The Fourier number is τ > 0.2 so that the one-term approximate solutions (or the 
transient temperature charts) are applicable (this assumption will be verified). 
Properties The thermal properties of the hot dog are given to be k = 0.44 Btu/h.ft.°F, ρ = 61.2 lbm/ft3 cp = 
0.93 Btu/lbm.°F, and α = 0.0077 ft2/h. 
Analysis (a) This hot dog can physically be formed by the intersection of a long cylinder of radius ro = D/2 
= (0.4/12) ft and a plane wall of thickness 2L = (5/12) ft. The distance x is measured from the midplane.  
After 5 minutes 
First the Biot number is calculated for the plane wall to be  
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The constants 11  and Aλ corresponding to this 
Biot number are, from Table 11-2, 
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The Fourier number is  
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Then the dimensionless temperature at the center of the plane wall is determined from  
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We repeat the same calculations for the long cylinder, 
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Then the center temperature of the short cylinder becomes 
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After 10 minutes 
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After 15 minutes 
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(b) Treating the hot dog as an infinitely long cylinder will not change the results obtained in the part (a) 
since dimensionless temperatures for the plane wall is 1 for all cases. 
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11-82E A hot dog is dropped into boiling water. The center temperature of the hot dog is do be determined 
by treating hot dog as a finite cylinder and an infinitely long cylinder. 
Assumptions 1 When treating hot dog as a finite cylinder, heat conduction in the hot dog is two-
dimensional, and thus the temperature varies in both the axial x- and the radial r- directions. When treating 
hot dog as an infinitely long cylinder, heat conduction is one-dimensional in the radial r- direction. 2 The 
thermal properties of the hot dog are constant. 3 The heat transfer coefficient is constant and uniform over 
the entire surface. 4 The Fourier number is τ > 0.2 so that the one-term approximate solutions (or the 
transient temperature charts) are applicable (this assumption will be verified). 
Properties The thermal properties of the hot dog are given to be k = 0.44 Btu/h.ft.°F, ρ = 61.2 lbm/ft3 cp = 
0.93 Btu/lbm.°F, and α = 0.0077 ft2/h. 
Analysis (a) This hot dog can physically be formed by the intersection of a long cylinder of radius ro = D/2 
= (0.4/12) ft  and a plane wall of thickness 2L = (5/12) ft. The distance x is measured from the midplane.  
After 5 minutes 
First the Biot number is calculated for the plane wall to be  
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The constants 11  and Aλ corresponding to this 
Biot number are, from Table 11-2, 
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The Fourier number is  
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Then the dimensionless temperature at the center of the plane wall is determined from  
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We repeat the same calculations for the long cylinder, 
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Then the center temperature of the short cylinder becomes 
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After 10 minutes 
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After 15 minutes 
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(b) Treating the hot dog as an infinitely long cylinder will not change the results obtained in the part (a) 
since dimensionless temperatures for the plane wall is 1 for all cases. 
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11-83 A rectangular ice block is placed on a table. The time the ice block starts melting is to be determined. 
Assumptions 1 Heat conduction in the ice block is two-dimensional, and thus the temperature varies in 
both x- and y- directions. 2 The thermal properties of the ice block are constant. 3 The heat transfer 
coefficient is constant and uniform over the entire surface. 4 The Fourier number is τ > 0.2 so that the one-
term approximate solutions (or the transient temperature charts) are applicable (this assumption will be 
verified). 
Properties The thermal properties of the ice are given to be k = 2.22 W/m.°C and α = 0.124×10-7 m2/s. 
Analysis This rectangular ice block can be treated as a short 
rectangular block that can physically be formed by the intersection 
of two infinite plane wall of thickness 2L = 4 cm and an infinite 
plane wall of thickness 2L = 10 cm. We measure x from the 
bottom surface of the block since this surface represents the 
adiabatic center surface of the plane wall of thickness 2L = 10 cm. 
Since the melting starts at the corner of the top surface, we need to 
determine the time required to melt ice block which will happen 
when the temperature drops below 0°C at this location. The Biot 
numbers and the corresponding constants are first determined to 
be 
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The ice will start melting at the corners because of the maximum exposed surface area there. Noting that 
2/ Ltατ =  and assuming that τ > 0.2 in all dimensions so that the one-term approximate solution for 

transient heat conduction is applicable, the product solution method can be written for this problem as 
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Therefore, the ice will start melting in about 21 hours.  
Discussion Note that 
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and thus the assumption of  τ > 0.2 for the applicability of the one-term approximate solution is verified. 
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11-84 EES Prob. 11-83 is reconsidered. The effect of the initial temperature of the ice block on the time 
period before the ice block starts melting is to be investigated. 
Analysis The problem is solved using EES, and the solution is given below. 
 
"GIVEN" 
2*L_1=0.04 [m] 
L_2=L_1 
2*L_3=0.10 [m] 
T_i=-20 [C] 
T_infinity=18 [C] 
h=12 [W/m^2-C] 
T_L1_L2_L3=0 [C] 
"PROPERTIES" 
k=2.22 [W/m-C] 
alpha=0.124E-7 [m^2/s] 
"ANALYSIS" 
"This block can physically be formed by the intersection of two infinite plane wall of thickness 
2L=4 cm and an infinite plane wall of thickness 2L=10 cm" 
"For the two plane walls" 
Bi_w1=(h*L_1)/k 
"From Table 11-2 corresponding to this Bi number, we read" 
lambda_1_w1=0.3208 "w stands for wall" 
A_1_w1=1.0173 
time*Convert(min, s)=tau_w1*L_1^2/alpha 
"For the third plane wall" 
Bi_w3=(h*L_3)/k 
"From Table 11-2 corresponding to this Bi number, we read" 
lambda_1_w3=0.4951 
A_1_w3=1.0408 
time*Convert(min, s)=tau_w3*L_3^2/alpha 
theta_L_w1=A_1_w1*exp(-lambda_1_w1^2*tau_w1)*Cos(lambda_1_w1*L_1/L_1) 
"theta_L_w1=(T_L_w1-T_infinity)/(T_i-T_infinity)" 
theta_L_w3=A_1_w3*exp(-lambda_1_w3^2*tau_w3)*Cos(lambda_1_w3*L_3/L_3) 
"theta_L_w3=(T_L_w3-T_infinity)/(T_i-T_infinity)" 
(T_L1_L2_L3-T_infinity)/(T_i-T_infinity)=theta_L_w1^2*theta_L_w3 "corner temperature" 
 
 
 

Ti [C] time [min] 
-26 1614 
-24 1512 
-22 1405 
-20 1292 
-18 1173 
-16 1048 
-14 914.9 
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11-85 A cylindrical ice block is placed on a table. The initial temperature of the ice block to avoid melting 
for 2 h is to be determined. 
Assumptions 1 Heat conduction in the ice block is two-dimensional, and thus the temperature varies in 
both x- and r- directions. 2 Heat transfer from the base of the ice block to the table is negligible. 3 The 
thermal properties of the ice block are constant. 4 The heat transfer coefficient is constant and uniform over 
the entire surface. 5 The Fourier number is τ > 0.2 so that the one-term approximate solutions (or the 
transient temperature charts) are applicable (this assumption will be verified). 
Properties The thermal properties of the ice are given to be  k 
= 2.22 W/m.°C and α = 0.124×10-7 m2/s. 
Analysis This cylindrical ice block can be treated as a short 
cylinder that can physically be formed by the intersection of a 
long cylinder of diameter D = 2 cm and an infinite plane wall 
of thickness 2L = 4 cm. We measure x from the bottom surface 
of the block since this surface represents the adiabatic center 
surface of the plane wall of thickness 2L = 4 cm. The melting 
starts at the outer surfaces of the top surface when the 
temperature drops below 0°C at this location. The Biot 
numbers, the corresponding constants, and the Fourier numbers 
are 
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Note that τ > 0.2 in all dimensions and thus the one-term approximate solution for transient  
heat conduction is applicable. The product solution for this problem can be written as 
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which gives C6.6°−=iT  

Therefore, the ice will not start melting for at least 3 hours if its initial temperature is -6.6°C or below.   
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11-86 A cubic block and a cylindrical block are exposed to hot gases on all of their surfaces. The center 
temperatures of each geometry in 10, 20, and 60 min are to be determined. 
Assumptions 1 Heat conduction in the cubic block is three-dimensional, and thus the temperature varies in 
all x-, y, and z- directions. 2 Heat conduction in the cylindrical block is two-dimensional, and thus the 
temperature varies in both axial  x- and radial r- directions. 3 The thermal properties of the granite are 
constant. 4 The heat transfer coefficient is constant and uniform over the entire surface. 5 The Fourier 
number is τ > 0.2 so that the one-term approximate solutions (or the transient temperature charts) are 
applicable (this assumption will be verified). 
Properties The thermal properties of the granite are given to be  k = 2.5 W/m.°C and α = 1.15×10-6 m2/s. 
Analysis:  
Cubic block: This cubic block can physically be formed by the intersection of three infinite plane walls of 
thickness 2L = 5 cm.  
After 10 minutes: The Biot number, the corresponding constants, and the Fourier number are 
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To determine the center temperature, the product solution can be written as 
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After 20 minutes 
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After 60 minutes 
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Note that τ > 0.2 in all dimensions and thus the one-term approximate solution for transient heat 
conduction is applicable. 

Ti = 20°C 

Hot gases 
500°C 

5 cm × 5 cm × 5 

Ti = 20°C 
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Cylinder: This cylindrical block can physically be formed by the intersection of a long cylinder of radius 
ro = D/2 = 2.5 cm and a plane wall of thickness 2L = 5 cm. 
After 10 minutes: The Biot number and the corresponding constants  for the long cylinder are 
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To determine the center temperature, the product solution can be written as 
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After 20 minutes 
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After 60 minutes 
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Note that τ > 0.2 in all dimensions and thus the one-term approximate solution for transient heat 
conduction is applicable. 
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11-87 A cubic block and a cylindrical block are exposed to hot gases on all of their surfaces. The center 
temperatures of each geometry in 10, 20, and 60 min are to be determined. 
Assumptions 1 Heat conduction in the cubic block is three-dimensional, and thus the temperature varies in 
all x-, y, and z- directions. 2 Heat conduction in the cylindrical block is two-dimensional, and thus the 
temperature varies in both axial  x- and radial r- directions. 3 The thermal properties of the granite are 
constant. 4 The heat transfer coefficient is constant and uniform over the entire surface. 5 The Fourier 
number is τ > 0.2 so that the one-term approximate solutions (or the transient temperature charts) are 
applicable (this assumption will be verified). 
Properties The thermal properties of the granite are k = 2.5 W/m.°C and α = 1.15×10-6 m2/s. 
Analysis:  
Cubic block: This cubic block can physically be formed by the intersection of three infinite plane wall of 
thickness 2L = 5 cm. Two infinite plane walls are exposed to the hot gases with a heat transfer coefficient 
of h = °40 W / m . C2  and one with h = °80 W / m . C2 .  

After 10 minutes: The Biot number and the corresponding constants for C. W/m40 2 °=h  are  
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The Biot number and the corresponding constants for C. W/m80 2 °=h  are 
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The Fourier number is 
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To determine the center temperature, the product solution method can 
be written as 
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After 20 minutes 
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Ti = 20°C 

Hot gases 
500°C 

5 cm × 5 cm × 5 

Ti = 20°C 
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After 60 minutes 
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Note that τ > 0.2 in all dimensions and thus the one-term approximate solution for transient heat 
conduction is applicable. 
Cylinder: This cylindrical block can physically be formed by the intersection of a long cylinder of radius 
ro = D/2 = 2.5 cm exposed to the hot gases with a heat transfer coefficient of C. W/m40 2 °=h  and a plane 
wall of thickness 2L = 5 cm exposed to the hot gases with C. W/m80 2 °=h . 
After 10 minutes: The Biot number and the corresponding constants  for the long cylinder are 
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To determine the center temperature, the product solution method can be written as 
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After 20 minutes 
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After 60 minutes 

  { }{ } C500°=⎯→⎯==
−

− −− ),0,0(0001568.0)0931.1()1016.1(
50020

500),0,0( )624.6()8516.0()624.6()7910.0( 22
tTee

tT
 

Note that τ > 0.2 in all dimensions and thus the one-term approximate solution for transient heat 
conduction is applicable. 
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11-88 A cylindrical aluminum block is heated in a furnace. The length of time the block should be kept in 
the furnace and the amount of heat transfer to the block are to be determined. 
Assumptions 1 Heat conduction in the cylindrical block is two-dimensional, and thus the temperature 
varies in both axial  x- and radial r- directions. 2 The thermal properties of the aluminum are constant. 3 
The heat transfer coefficient is constant and uniform over the entire surface. 4 The Fourier number is τ > 
0.2 so that the one-term approximate solutions (or the transient temperature charts) are applicable (it will 
be verified). 
Properties The thermal properties of the aluminum block are given to be k = 236 W/m.°C, ρ = 2702 kg/m3, 
cp = 0.896 kJ/kg.°C, and α = 9.75×10-5 m2/s. 
Analysis This cylindrical aluminum block can physically be formed by the intersection of an infinite plane 
wall of thickness 2L = 20 cm, and a long cylinder of radius ro = D/2 = 7.5 cm. The Biot numbers and the 
corresponding constants are first determined to be 
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Noting that 2/ Ltατ =  and assuming τ > 0.2 in all dimensions and thus the one-term approximate solution 
for transient heat conduction is applicable, the product solution for this problem can be written as 
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Solving for the time t gives  
t = 241 s = 4.0 min.   

We note that  
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and thus the assumption of  τ > 0.2 for the applicability 
of the one-term approximate solution is verified. The 
dimensionless temperatures at the center are 
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The maximum amount of heat transfer is 
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Then we determine the dimensionless heat transfer ratios for both geometries as 

L z

Cylinder 
Ti = 20°C 

ro

Furnace 
T∞ = 1200°C 
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The heat transfer ratio for the short cylinder is 
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Then the total heat transfer from the short cylinder as it is cooled from 300°C at the center to 20°C 
becomes 
 kJ 2490=== kJ) 100,10)(2463.0(2463.0 maxQQ  

which is identical to the heat transfer to the cylinder as the cylinder at 20°C is heated to 300°C at the 
center. 
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11-89 A cylindrical aluminum block is heated in a furnace. The length of time the block should be kept in 
the furnace and the amount of heat transferred to the block are to be determined. 
Assumptions 1 Heat conduction in the cylindrical block is two-dimensional, and thus the temperature 
varies in both axial x- and radial r- directions. 2 Heat transfer from the bottom surface of the block is 
negligible.  3 The thermal properties of the aluminum are constant. 4 The heat transfer coefficient is 
constant and uniform over the entire surface. 5 The Fourier number is τ > 0.2 so that the one-term 
approximate solutions (or the transient temperature charts) are applicable (this assumption will be verified). 
Properties The thermal properties of the aluminum block are given to be k = 236 W/m.°C, ρ = 2702 kg/m3, 
cp = 0.896 kJ/kg.°C, and α = 9.75×10-5 m2/s. 
Analysis This cylindrical aluminum block can physically be formed by the intersection of an infinite plane 
wall of thickness 2L = 40 cm and a long cylinder of radius ro = D/2 = 7.5 cm. Note that the height of the 
short cylinder represents the half thickness of the infinite plane wall where the bottom surface of the short 
cylinder is adiabatic. The Biot numbers and corresponding constants are first determined to be 
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Noting that 2/ Ltατ =  and assuming τ > 0.2 in all dimensions and thus the one-term approximate solution 
for transient heat conduction is applicable, the product solution for this problem can be written as 
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Solving for the time t gives  
t = 285 s = 4.7 min.   

We note that 

 
2.0940.4

m) 075.0(
s) /s)(285m 1075.9(

2.06947.0
m) 2.0(

s) /s)(285m 1075.9(

2

25

2cyl

2

25

2wall

>=
×

==

>=
×

==

−

−

or
t

L
t

ατ

ατ

 

and thus the assumption of  τ > 0.2 for the applicability of the 
one-term approximate solution is verified. The dimensionless 
temperatures at the center are 

 
[ ]
[ ] 7897.0)940.4()2217.0(exp)0063.1(),0(

9658.0)6947.0()2568.0(exp)0110.1(),0(

2

cyl
1cyl

2

wall
1wall

2
1

2
1

=−=⎟
⎠
⎞⎜

⎝
⎛=

=−=⎟
⎠
⎞⎜

⎝
⎛=

−

−

τλ

τλ

θ

θ

eAt

eAt
 

The maximum amount of heat transfer is 
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Then we determine the dimensionless heat transfer ratios for both geometries as 
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The heat transfer ratio for the short cylinder is 
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Then the total heat transfer from the short cylinder as it is cooled from 300°C at the center to 20°C 
becomes 
 kJ 2530=== kJ) 100,10)(2507.0(2507.0 maxQQ  

which is identical to the heat transfer to the cylinder as the cylinder at 20°C is heated to 300°C at the 
center. 
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11-90 EES Prob. 11-88 is reconsidered. The effect of the final center temperature of the block on the 
heating time and the amount of heat transfer is to be investigated. 
Analysis The problem is solved using EES, and the solution is given below. 
 
"GIVEN" 
L=0.20 [m] 
2*r_o=0.15 [m] 
T_i=20 [C] 
T_infinity=1200 [C] 
T_o_o=300 [C] 
h=80 [W/m^2-C] 
 
"PROPERTIES" 
k=236 [W/m-C] 
rho=2702 [kg/m^3] 
c_p=0.896 [kJ/kg-C] 
alpha=9.75E-5 [m^2/s] 
 
"ANALYSIS" 
"This short cylinder can physically be formed by the intersection of a long cylinder of radius r_o 
and a plane wall of thickness 2L" 
"For plane wall" 
Bi_w=(h*L)/k 
"From Table 11-2 corresponding to this Bi number, we read" 
lambda_1_w=0.2568 "w stands for wall" 
A_1_w=1.0110 
tau_w=(alpha*time)/L^2 
theta_o_w=A_1_w*exp(-lambda_1_w^2*tau_w) "theta_o_w=(T_o_w-T_infinity)/(T_i-T_infinity)" 
"For long cylinder" 
Bi_c=(h*r_o)/k "c stands for cylinder" 
"From Table 11-2 corresponding to this Bi number, we read" 
lambda_1_c=0.2217 
A_1_c=1.0063 
tau_c=(alpha*time)/r_o^2 
theta_o_c=A_1_c*exp(-lambda_1_c^2*tau_c) "theta_o_c=(T_o_c-T_infinity)/(T_i-T_infinity)" 
(T_o_o-T_infinity)/(T_i-T_infinity)=theta_o_w*theta_o_c "center temperature of cylinder" 
V=pi*r_o^2*L 
m=rho*V 
Q_max=m*c_p*(T_infinity-T_i) 
Q_w=1-theta_o_w*Sin(lambda_1_w)/lambda_1_w "Q_w=(Q/Q_max)_w" 
Q_c=1-2*theta_o_c*J_1/lambda_1_c "Q_c=(Q/Q_max)_c" 
J_1=0.1101 "From Table 11-3, at lambda_1_c" 
Q/Q_max=Q_w+Q_c*(1-Q_w) "total heat transfer" 
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To,o [C] time [s] Q [kJ] 

50 42.43 430.3 
100 86.33 850.6 
150 132.3 1271 
200 180.4 1691 
250 231.1 2111 
300 284.5 2532 
350 340.9 2952 
400 400.8 3372 
450 464.5 3793 
500 532.6 4213 
550 605.8 4633 
600 684.9 5053 
650 770.8 5474 
700 864.9 5894 
750 968.9 6314 
800 1085 6734 
850 1217 7155 
900 1369 7575 
950 1549 7995 

1000 1770 8416 
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Review Problems 
 
 
11-91 Two large steel plates are stuck together because of the freezing of the water between the two plates. 
Hot air is blown over the exposed surface of the plate on the top to melt the ice. The length of time the hot 
air should be blown is to be determined. 
Assumptions 1 Heat conduction in the plates is one-dimensional since the plate is large relative to its 
thickness and there is thermal symmetry about the center plane. 3 The thermal properties of the steel plates 
are constant. 4 The heat transfer coefficient is constant and uniform over the entire surface. 5 The Fourier 
number is τ > 0.2 so that the one-term approximate solutions (or the transient temperature charts) are 
applicable (this assumption will be verified). 
Properties The thermal properties of steel plates are given to be  k = 43 W/m.°C and  α = 1.17×10-5 m2/s 
Analysis The characteristic length of the plates and the Biot number are 
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Since 0.1<Bi , the lumped system analysis is applicable. Therefore, 
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Alternative solution: This problem can also be solved using the transient chart Fig. 11-15a, 
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The difference is due to the reading error of the chart.  

Steel plates 
Ti = -15°C  

Hot gases 
T∞ = 50°C 
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11-92 A curing kiln is heated by injecting steam into it and raising its inner surface temperature to a 
specified value. It is to be determined whether the temperature at the outer surfaces of the kiln changes 
during the curing period. 
Assumptions 1 The temperature in the wall is affected by the thermal conditions at inner surfaces only and 
the convection heat transfer coefficient inside is very large. Therefore, the wall can be considered to be a 
semi-infinite medium with a specified surface temperature of 45°C. 2 The thermal properties of the 
concrete wall are constant. 
Properties The thermal properties of the concrete wall are given to be k = 0.9 W/m.°C and α = 0.23×10-5 
m2/s. 
Analysis We determine the temperature at a depth of x = 
0.3 m in 2.5 h using the analytical solution, 
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Substituting,  
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which is greater than the initial temperature of 6°C. Therefore, heat will propagate through the 0.3 m thick 
wall in 2.5 h, and thus it may be desirable to insulate the outer surface of the wall to save energy. 
 
 
 
 
11-93 The water pipes are buried in the ground to prevent freezing. The minimum burial depth at a 
particular location is to be determined. 
Assumptions 1 The temperature in the soil is affected by the thermal conditions at one surface only, and 
thus the soil can be considered to be a semi-infinite medium with a specified surface temperature of  -10°C. 
2 The thermal properties of the soil are constant. 
Properties The thermal properties of the soil are given 
to be k = 0.7 W/m.°C and α = 1.4×10-5 m2/s. 
Analysis The depth at which the temperature drops 
to 0°C in 75 days is determined using the analytical 
solution, 
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Substituting and using Table 11-4, we obtain  
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25  

Therefore, the pipes must be buried at a depth of at least 7.05 m. 

6°C 42°C

30 cm 

Kiln wall 

x 0

Soil 
Ti = 15°C

Water pipe 

 Ts =-10°C 

x
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11-94 A hot dog is to be cooked by dropping it into boiling water. The time of cooking is to be determined. 
Assumptions 1 Heat conduction in the hot dog is two-dimensional, and thus the temperature varies in both 
the axial x- and the radial r- directions. 2 The thermal properties of the hot dog are constant. 4 The heat 
transfer coefficient is constant and uniform over the entire surface. 5 The Fourier number is τ > 0.2 so that 
the one-term approximate solutions (or the transient temperature charts) are applicable (this assumption 
will be verified). 
Properties The thermal properties of the hot dog are given to be k = 0.76 W/m.°C, ρ = 980 kg/m3, cp = 3.9 
kJ/kg.°C, and α = 2×10-7 m2/s. 
Analysis This hot dog can physically be formed by the intersection of an infinite plane wall of  thickness 
2L = 12 cm, and a long cylinder of radius ro = D/2 = 1 cm. The Biot numbers and corresponding constants 
are first determined to be 

37.47
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Noting that 2/ Ltατ =  and assuming τ > 0.2 in all dimensions and thus the one-term approximate solution 
for transient heat conduction is applicable, the product solution for this problem can be written as 
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which gives 
 min 4.1 s 244 = =t  
Therefore, it will take about 4.1 min for the hot dog to cook. Note that  

 2.049.0
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s) /s)(244m 102(
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o
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tατ  

and thus the assumption τ > 0.2 for the applicability of the one-term approximate solution is verified. 
Discussion This problem could also be solved by treating the hot dog as an infinite cylinder since heat 
transfer through the end surfaces will have little effect on the mid section temperature because of the large 
distance. 

Water 
100°C

2 cm   Hot dog   Ti = 5°C 
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11-95 A long roll of large 1-Mn manganese steel plate is to be quenched in an oil bath at a specified rate. 
The temperature of the sheet metal after quenching and the rate at which heat needs to be removed from the 
oil in order to keep its temperature constant are to be determined.  
Assumptions 1 The thermal properties of the steel plate are constant. 2 The heat transfer coefficient is 
constant and uniform over the entire surface.  3 The Biot number is Bi < 0.1 so that the lumped system 
analysis is applicable (this assumption will be checked). 
Properties The properties of the steel plate are  k = 60.5 W/m.°C, ρ = 7854 kg/m3, and cp = 434 J/kg.°C 
(Table A-24). 
Analysis The characteristic length of the steel 
plate and the Biot number are 
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Since 0.1<Bi , the lumped system analysis is applicable. Therefore, 
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Then the temperature of the sheet metal when it leaves the oil bath is determined to be 
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The mass flow rate of the sheet metal through the oil bath is 

 kg/min 1178m/min) 15(m) 005.0(m) 2)(kg/m 7854( 3 ==== wtVm ρρV&&  

Then the rate of heat transfer from the sheet metal to the oil bath and thus the rate at which heat needs to be 
removed from the oil in order to keep its temperature constant at 45°C becomes 

 kW 6429= kJ/min 740,385C)5.65820)(CkJ/kg. 434.0)(kg/min 1178()]([ =°−°=−= tTTcmQ ip&&  

Steel plate 
15 m/min 

 Oil bath 
45°C 
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11-96E A stuffed turkey is cooked in an oven. The average heat transfer coefficient at the surface of the 
turkey, the temperature of the skin of the turkey in the oven and the total amount of heat transferred to the 
turkey in the oven are to be determined. 
Assumptions 1 The turkey is a homogeneous spherical object. 2 Heat conduction in the turkey is one-
dimensional because of symmetry about the midpoint. 3 The thermal properties of the turkey are constant. 
4 The heat transfer coefficient is constant and uniform over the entire surface. 5 The Fourier number is τ > 
0.2 so that the one-term approximate solutions are applicable (this assumption will be verified). 
Properties The properties of the turkey are given to be k = 0.26 Btu/h.ft.°F, ρ = 75 lbm/ft3, cp = 0.98 
Btu/lbm.°F, and α = 0.0035 ft2/h. 
Analysis (a) Assuming the turkey to be spherical in shape, its radius is 
determined to be 
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The Fourier number is 1392.0
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which is close to 0.2 but a little below it. Therefore, assuming the 
one-term approximate solution for transient heat conduction to be 
applicable, the one-term solution formulation at one-third the radius 
from the center of the turkey can be expressed as 
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By trial and error, it is determined from Table 11-2 that the equation above is satisfied when Bi = 20 
corresponding to 9781.1   and   9857.2 11 == Aλ . Then the heat transfer coefficient can be determined 
from 
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 (b) The temperature at the surface of the turkey is 
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(c) The maximum possible heat transfer is 
 Btu 3910=F)40325)(FBtu/lbm. 98.0)(lbm 14()(max °−°=−= ∞ ip TTmcQ  

Then the actual amount of heat transfer becomes 
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Discussion The temperature of the outer parts of the turkey will be greater than that of the inner parts when 
the turkey is taken out of the oven. Then heat will continue to be transferred from the outer parts of the 
turkey to the inner as a result of temperature difference. Therefore, after 5 minutes, the thermometer 
reading will probably be more than 185°F. 

Oven 
T∞ = 325°F 

Turkey 
Ti = 40°F 
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11-97 CD EES The trunks of some dry oak trees are exposed to hot gases. The time for the ignition of the 
trunks is to be determined. 
Assumptions 1 Heat conduction in the trunks is one-dimensional since it is long and it has thermal 
symmetry about the center line. 2 The thermal properties of the trunks are constant. 3 The heat transfer 
coefficient is constant and uniform over the entire surface. 4 The Fourier number is τ > 0.2 so that the one-
term approximate solutions (or the transient temperature charts) are applicable (this assumption will be 
verified). 
Properties The properties of the trunks are given to be k = 0.17 W/m.°C and  α = 1.28×10-7 m2/s. 
Analysis We treat the trunks of the trees as an infinite 
cylinder since heat transfer is primarily in the radial 
direction. Then the Biot number becomes  
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The constants 11  and Aλ corresponding to this Biot 
number are, from Table 11-2, 
  5989.1   and   3420.2 11 == Aλ  
The Fourier number is  
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which is slightly below 0.2 but close to it. Therefore, assuming the one-term approximate solution for 
transient heat conduction to be applicable, the temperature at the surface of the trees in 4 h becomes 
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Therefore, the trees will ignite. (Note: J0  is read from Table 11-3).  

 
 
 
11-98 A spherical watermelon that is cut into two equal parts is put into a freezer. The time it will take for 
the center of the exposed cut surface to cool from 25 to 3°C is to be determined. 
Assumptions 1 The temperature of the exposed surfaces of the watermelon is affected by the convection 
heat transfer at those surfaces only. Therefore, the watermelon can be considered to be a semi-infinite 
medium 2 The thermal properties of the watermelon are constant. 
Properties The thermal properties of the water is closely approximated by those of water at room 
temperature, k = 0.607 W/m.°C and α = =pck ρ/  0.146×10-6 m2/s (Table A-15). 

Analysis We use the transient chart in Fig. 11-29 in this 
case for convenience (instead of the analytic solution), 
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Ti = 30°C  Hot  

gases 
T∞ = 520°C

Freezer 
T∞ = -12°C 

Watermelon
Ti = 25°C 
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11-99 A cylindrical rod is dropped into boiling water. The thermal diffusivity and the thermal conductivity 
of the rod are to be determined. 
Assumptions 1 Heat conduction in the rod is one-dimensional since the rod is sufficiently long, and thus 
temperature varies in the radial direction only. 2 The thermal properties of the rod are constant. 
Properties The thermal properties of the rod available are given to be ρ = 3700 kg/m3 and Cp = 920 
J/kg.°C. 
Analysis From Fig. 11-16b we have 
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From Fig. 11-16a we have 
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Then the thermal diffusivity and the thermal conductivity of the material become 
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11-100 The time it will take for the diameter of a raindrop to reduce to a certain value as it falls through 
ambient air is to be determined. 
Assumptions 1 The water temperature remains constant. 2 The thermal properties of the water are constant. 
Properties The density and heat of vaporization of the water are ρ = 1000 kg/m3 and hfg = 2490 kJ/kg 
(Table A-15). 
Analysis The initial and final masses of the raindrop are 
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whose difference is 
 kg 0000513.00000141.00000654.0 =−=−= fi mmm  

The amount of heat transfer required to cause this much evaporation is 
 kJ 1278.0kJ/kg) kg)(2490 0000513.0( ==Q  
The average heat transfer surface area and the rate of heat transfer are 
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Then the time required for the raindrop to experience this reduction in size becomes 
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Water 
100°C

 2 cm      Rod    Ti = 25°C 

Air 
T∞ = 18°C 

 
 

Raindrop 
5°C 
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11-101E A plate, a long cylinder, and a sphere are exposed to cool air. The center temperature of each 
geometry is to be determined. 
Assumptions 1 Heat conduction in each geometry is one-dimensional. 2 The thermal properties of the 
bodies are constant. 3 The heat transfer coefficient is constant and uniform over the entire surface. 4 The 
Fourier number is τ > 0.2 so that the one-term approximate solutions (or the transient temperature charts) 
are applicable (this assumption will be verified). 
Properties The properties of bronze are given to be k = 15 Btu/h.ft.°F and α = 0.333 ft2/h. 
Analysis After 5 minutes  
Plate: First the Biot number is calculated to be  
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The constants 11  and Aλ corresponding to this Biot number are, from Table 11-2, 
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Then the center temperature of the plate becomes  
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Sphere: 

  01944.0=Bi 0058.1   and   2405.0 11
24 Table ==⎯⎯⎯ →⎯ − Aλ  

           F205°=⎯→⎯==
−
−

⎯→⎯=
−
−

= −−

∞

∞
0

)98.15()2405.0(0
1,0 399.0)0058.1(

75400
75 22

1 Te
T

eA
TT
TT

i

o
sph

τλθ  

After 10 minutes 
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After 30 minutes 
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The sphere has the largest surface area through which heat is transferred per unit volume, and thus the 
highest rate of heat transfer. Consequently, the center temperature of the sphere is always the lowest. 
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11-102E A plate, a long cylinder, and a sphere are exposed to cool air. The center temperature of each 
geometry is to be determined. 
Assumptions 1 Heat conduction in each geometry is one-dimensional. 2 The thermal properties of the 
geometries are constant. 3 The heat transfer coefficient is constant and uniform over the entire surface. 4 
The Fourier number is τ > 0.2 so that the one-term approximate solutions (or the transient temperature 
charts) are applicable (this assumption will be verified). 
Properties The properties of cast iron are given to be k = 29 Btu/h.ft.°F and α = 0.61 ft2/h. 
Analysis After 5 minutes  
Plate: First the Biot number is calculated to be  
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The constants 11  and Aλ corresponding to this Biot number are, from Table 11-2, 
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Then the center temperature of the plate becomes  
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After 10 minutes 
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After 30 minutes 
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The sphere has the largest surface area through which heat is transferred per unit volume, and thus the 
highest rate of heat transfer. Consequently, the center temperature of the sphere is always the lowest. 



 

PROPRIETARY MATERIAL. © 2008 The McGraw-Hill Companies, Inc.  Limited distribution permitted only to teachers and 
educators for course preparation.  If you are a student using this Manual, you are using it without permission. 

11-88

 

11-103E EES Prob. 11-101E is reconsidered. The center temperature of each geometry as a function of the 
cooling time is to be plotted. 
Analysis The problem is solved using EES, and the solution is given below. 
 
"GIVEN" 
2*L=(1/12) [ft] 
2*r_o_c=(1/12) [ft] "c stands for cylinder" 
2*r_o_s=(1/12) [ft] "s stands for sphere" 
T_i=400 [F] 
T_infinity=75 [F] 
h=7 [Btu/h-ft^2-F] 
time=5 [min] 
 
"PROPERTIES" 
k=15 [Btu/h-ft-F] 
alpha=0.333 [ft^2/h]*Convert(ft^2/h, ft^2/min) 
 
"ANALYSIS" 
"For plane wall" 
Bi_w=(h*L)/k 
"From Table 11-2 corresponding to this Bi number, we read" 
lambda_1_w=0.1387 
A_1_w=1.0032 
tau_w=(alpha*time)/L^2 
(T_o_w-T_infinity)/(T_i-T_infinity)=A_1_w*exp(-lambda_1_w^2*tau_w) 
"For long cylinder" 
Bi_c=(h*r_o_c)/k 
"From Table 11-2 corresponding to this Bi number, we read" 
lambda_1_c=0.1962 
A_1_c=1.0049 
tau_c=(alpha*time)/r_o_c^2 
(T_o_c-T_infinity)/(T_i-T_infinity)=A_1_c*exp(-lambda_1_c^2*tau_c) 
"For sphere" 
Bi_s=(h*r_o_s)/k 
"From Table 11-2 corresponding to this Bi number, we read" 
lambda_1_s=0.2405 
A_1_s=1.0058 
tau_s=(alpha*time)/r_o_s^2 
(T_o_s-T_infinity)/(T_i-T_infinity)=A_1_s*exp(-lambda_1_s^2*tau_s) 
 
 

time [min] To,w [F] To,c [F] To,s [F] 
5 314.7 251.5 204.7 

10 251.3 170.4 126.4 
15 204.6 126.6 95.41 
20 170.3 102.9 83.1 
25 145.1 90.06 78.21 
30 126.5 83.14 76.27 
35 112.9 79.4 75.51 
40 102.9 77.38 75.2 
45 95.48 76.29 75.08 
50 90.06 75.69 75.03 
55 86.07 75.38 75.01 
60 83.14 75.2 75 
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11-104 Internal combustion engine valves are quenched in a large oil bath. The time it takes for the valve 
temperature to drop to specified temperatures and the maximum heat transfer are to be determined. 
Assumptions 1 The thermal properties of the valves are constant. 2 The heat transfer coefficient is constant 
and uniform over the entire surface. 3 Depending on the size of the oil bath, the oil bath temperature will 
increase during quenching. However, an average canstant temperature as specified in the problem will be 
used.  4 The Biot number is Bi < 0.1 so that the lumped system analysis is applicable (this assumption will 
be verified). 
Properties The thermal conductivity, density, and 
specific heat of the balls are given to be k = 48 
W/m.°C, ρ = 7840 kg/m3, and cp = 440 J/kg.°C. 
Analysis (a) The characteristic length of the 
balls and the Biot number are 
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Therefore, we can use lumped system analysis. Then the 
time for a final valve temperature of 400°C becomes  
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(b) The time for a final valve temperature of 200°C is  
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(c) The time for a final valve temperature of 51°C is  
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(d) The maximum amount of heat transfer from a single valve is determined from 
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T∞ = 50°C 

Engine valve
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11-105 A watermelon is placed into a lake to cool it. The heat transfer coefficient at the surface of the 
watermelon and the temperature of the outer surface of the watermelon are to be determined. 
Assumptions 1 The watermelon is a homogeneous spherical object. 2 Heat conduction in the watermelon is 
one-dimensional because of symmetry about the midpoint. 3 The thermal properties of the watermelon are 
constant. 4 The heat transfer coefficient is constant and uniform over the entire surface. 5 The Fourier 
number is τ > 0.2 so that the one-term approximate solutions (or the transient temperature charts) are 
applicable (this assumption will be verified). 
Properties The properties of the watermelon are given to be k = 0.618 W/m.°C, α = 0.15×10-6 m2/s, ρ = 
995 kg/m3 and cp = 4.18 kJ/kg.°C. 
Analysis The Fourier number is 
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which is greater than 0.2. Then the one-term solution can be 
written in the form 

   )252.0(
11

0
sph0,

2
1

2
1 25.0

1535
1520 λτλθ −−

∞

∞ ==
−
−

⎯→⎯=
−
−

= eAeA
TT
TT

i
 

It is determined from Table 11-2 by trial and error that this equation is satisfied when Bi = 10, which  
corresponds to   9249.1   and   8363.2 11 == Aλ . Then the heat transfer coefficient can be determined from 
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The temperature at the surface of the watermelon is 
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11-106 Large food slabs are cooled in a refrigeration room. Center temperatures are to be determined for 
different foods. 
Assumptions 1 Heat conduction in the slabs is one-dimensional since the slab is large relative to its 
thickness and there is thermal symmetry about the center plane. 3 The thermal properties of the slabs are 
constant. 4 The heat transfer coefficient is constant and uniform over the entire surface.  5 The Fourier 
number is τ > 0.2 so that the one-term approximate solutions (or the transient temperature charts) are 
applicable (this assumption will be verified). 
Properties The properties of foods are given to be k = 0.233 W/m.°C and α = 0.11×10-6 m2/s for margarine, 
k = 0.082 W/m.°C and α = 0.10×10-6 m2/s for white cake, and k = 0.106 W/m.°C and α = 0.12×10-6 m2/s 
for chocolate cake. 
Analysis (a) In the case of margarine, the Biot number is  
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The constants 11  and Aλ corresponding to this Biot 
number are, from Table 11-2,  
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Therefore, the one-term approximate solution (or the transient temperature charts) is applicable. Then the 
temperature at the center of the box if the box contains margarine becomes 
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(b) Repeating the calculations for white cake,  
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(c) Repeating the calculations for chocolate cake, 
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11-107 A cold cylindrical concrete column is exposed to warm ambient air during the day. The time it will 
take for the surface temperature to rise to a specified value, the amounts of heat transfer for specified 
values of center and surface temperatures are to be determined.  
Assumptions 1 Heat conduction in the column is one-dimensional since it is long and it has thermal 
symmetry about the center line. 2 The thermal properties of the column are constant. 3 The heat transfer 
coefficient is constant and uniform over the entire surface. 4 The Fourier number is τ > 0.2 so that the one-
term approximate solutions (or the transient temperature charts) are applicable (this assumption will be 
verified). 
Properties The properties of concrete are given to be k = 0.79 W/m.°C, α = 5.94×10-7 m2/s, ρ = 1600 kg/m3 
and cp = 0.84 kJ/kg.°C 
Analysis  (a) The Biot number is  
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The constants 11  and Aλ corresponding to this 
Biot number are, from Table 11-2, 
  3915.1   and   7240.1 11 == Aλ  

Once the constant J0 =0.3841 is determined from Table 11-3 
corresponding to the constant λ1 , the Fourier number is 
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which is above the value of 0.2. Therefore, the one-term approximate solution (or the transient temperature 
charts) can be used. Then the time it will take for the column surface temperature to rise to 27°C becomes 

 hours 7.1==
×

==
−

s 650,25
/sm 1094.5

m) 15.0)(6771.0(
27

22

α
τ ort  

(b) The heat transfer to the column will stop when the center temperature of column reaches to the ambient 
temperature, which is 28°C. That is, we are asked to determine the maximum heat transfer between the 
ambient air and the column. 
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(c) To determine the amount of heat transfer until the surface temperature reaches to 27°C, we first 
determine  
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Once the constant J1 = 0.5787 is determined from Table 11-3 corresponding to the constant λ1 , the amount 
of heat transfer becomes 
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11-108 Long aluminum wires are extruded and exposed to atmospheric air. The time it will take for the 
wire to cool, the distance the wire travels, and the rate of heat transfer from the wire are to be determined. 
Assumptions 1 Heat conduction in the wires is one-dimensional in the radial direction. 2 The thermal 
properties of the aluminum are constant. 3 The heat transfer coefficient is constant and uniform over the 
entire surface. 4 The Biot number is Bi < 0.1 so that the lumped system analysis is applicable (this 
assumption will be verified). 
Properties The properties of aluminum are given to be k = 236 W/m.°C, ρ = 2702 kg/m3, cp = 0.896 
kJ/kg.°C, and α = 9.75×10-5 m2/s. 
Analysis (a) The characteristic length of 
the wire and the Biot number are 
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Since 0.1,<Bi  the lumped system analysis is applicable. Then, 
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(b) The wire travels a distance of 

 m 24==→= s) m/s)(144 60/10(length
time

length
velocity  

This distance can be reduced by cooling the wire in a water or oil bath. 
(c) The mass flow rate of the extruded wire through the air is 

 kg/min 191.0m/min) 10(m) 0015.0()kg/m 2702()( 232 ==== ππρρ Vrm oV&&  

Then the rate of heat transfer from the wire to the air becomes 

 W856 =kJ/min 51.3=C)50350)(CkJ/kg. 896.0)(kg/min 191.0(])([ °−°=−= ∞TtTcmQ p&&  
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11-109 Long copper wires are extruded and exposed to atmospheric air. The time it will take for the wire to 
cool, the distance the wire travels, and the rate of heat transfer from the wire are to be determined. 
Assumptions 1 Heat conduction in the wires is one-dimensional in the radial direction. 2 The thermal 
properties of the copper are constant. 3 The heat transfer coefficient is constant and uniform over the entire 
surface. 4 The Biot number is Bi < 0.1 so that the lumped system analysis is applicable (this assumption 
will be verified). 
Properties The properties of copper are given to be k = 386 W/m.°C, ρ = 8950 kg/m3, cp = 0.383 kJ/kg.°C, 
and α = 1.13×10-4 m2/s. 
Analysis (a) The characteristic length of the 
wire and the Biot number are 
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Since 0.1<Bi  the lumped system analysis is applicable. Then, 
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(b) The wire travels a distance of 

 m 34=⎟
⎠
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⎝
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lengthvelocity  

This distance can be reduced by cooling the wire in a water or oil bath. 
(c) The mass flow rate of the extruded wire through the air is 

 kg/min 633.0m/min) 10(m) 0015.0()kg/m 8950()( 232 ==== ππρρ Vrm oV&&  

Then the rate of heat transfer from the wire to the air becomes 

 W1212 =kJ/min 72.7=C)50350)(CkJ/kg. 383.0)(kg/min 633.0(])([ °−°=−= ∞TtTcmQ p&&  
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11-110 A brick house made of brick that was initially cold is exposed to warm atmospheric air at the outer 
surfaces. The time it will take for the temperature of the inner surfaces of the house to start changing is to 
be determined. 
Assumptions 1 The temperature in the wall is affected by the thermal conditions at outer surfaces only, and 
thus the wall can be considered to be a semi-infinite medium with a specified outer surface temperature of 
18°C. 2 The thermal properties of the brick wall are constant. 
Properties The thermal properties of the brick are given to be k = 0.72 W/m.°C and α = 0.45×10-6 m2/s. 
Analysis The exact analytical solution to this problem is 
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Substituting, 
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Noting from Table 11-4 that 0.01 = erfc(1.8215), the time is 
determined to be 
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11-111 A thick wall is exposed to cold outside air. The wall temperatures at distances 15, 30, and 40 cm 
from the outer surface at the end of 2-hour cooling period are to be determined.      
Assumptions 1 The temperature in the wall is affected by the thermal conditions at outer surfaces only. 
Therefore, the wall can be considered to be a semi-infinite medium 2 The thermal properties of the wall are 
constant. 
Properties The thermal properties of the brick are given to 
be  k = 0.72 W/m.°C and α = 1.6×10-7 m2/s. 
Analysis For a 15 cm distance from the outer surface, from Fig. 11-29 we 
have 
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For a 30 cm distance from the outer surface, from Fig. 11-29 we have 
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For a 40 cm distance from the outer surface, that is for the inner surface, from Fig. 11-29 we have 
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Discussion This last result shows that the semi-infinite medium assumption is a valid one. 
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11-112 The engine block of a car is allowed to cool in atmospheric air. The temperatures at the center of 
the top surface and at the corner after a specified period of cooling are to be determined. 
Assumptions 1 Heat conduction in the block is three-dimensional, and thus the temperature varies in all 
three directions. 2 The thermal properties of the block are constant. 3 The heat transfer coefficient is 
constant and uniform over the entire surface. 4 The Fourier number is τ > 0.2 so that the one-term 
approximate solutions (or the transient temperature charts) are applicable (this assumption will be verified). 
Properties The thermal properties of cast iron are given to be k = 52 W/m.°C and α = 1.7×10-5 m2/s. 
Analysis This rectangular block can physically be formed by the intersection of two infinite plane walls of 
thickness 2L = 40 cm (call planes A and B) and an infinite plane wall of thickness 2L = 80 cm (call plane 
C). We measure x from the center of the block. 
(a) The Biot number is calculated for each of the plane wall to be  
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)m 2.0)(C. W/m6( 2

BA =
°

°
===

k
hLBiBi   

0462.0
)C W/m.52(

)m 4.0)(C. W/m6( 2

C =
°

°
==

k
hLBi  

The constants 11  and Aλ corresponding to these 
Biot numbers are, from Table 11-2, 
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The Fourier numbers are  
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The center of the top surface of the block (whose sides are 80 cm and 40 cm) is at the center of the plane 
wall with 2L = 80 cm, at the center of the plane wall with 2L = 40 cm, and at the surface of the plane wall 
with 2L = 40 cm. The dimensionless temperatures are  
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Then the center temperature of the top surface of the cylinder becomes 
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(b) The corner of the block is at the surface of each plane wall. The dimensionless temperature for the 
surface of the plane walls with 2L = 40 cm is determined in part (a). The dimensionless temperature for the 
surface of the plane wall with 2L = 80 cm is determined from  
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Then the corner temperature of the block becomes 
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11-113 A man is found dead in a room. The time passed since his death is to be estimated. 
Assumptions 1 Heat conduction in the body is two-dimensional, and thus the temperature varies in both 
radial r- and x- directions. 2 The thermal properties of the body are constant. 3 The heat transfer coefficient 
is constant and uniform over the entire surface. 4 The human body is modeled as a cylinder.   5 The Fourier 
number is τ > 0.2 so that the one-term approximate solutions (or the transient temperature charts) are 
applicable (this assumption will be verified). 
Properties The thermal properties of body are given to be k = 0.62 W/m.°C and α = 0.15×10-6 m2/s. 
Analysis A short cylinder can be formed by the intersection of a long cylinder of radius D/2 = 14 cm and a 
plane wall of thickness 2L = 180 cm. We measure x from the midplane. The temperature of the body is 
specified at a point that is at the center of the plane wall but at the surface of the cylinder. The Biot 
numbers and the corresponding constants are first determined to be 
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Noting that 2/ Ltατ =  for the plane wall and 2/ ortατ =  for 
cylinder and J0(1.6052)=0.4524 from Table 11-3, and 
assuming that τ > 0.2 in all dimensions so that the one-term 
approximate solution for transient heat conduction is 
applicable, the product solution method can be written for this 
problem as 

hours 9.0==⎯→⎯

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ×
−×

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ×
−=

⎥⎦
⎤

⎢⎣
⎡=

−
−

=

−

−

−−

s 404,32

)4524.0(
)14.0(

)1015.0()6052.1(exp)3408.1(

)90.0(
)1015.0()4495.1(exp)2644.1(40.0

)/()(
1636
1623

),(),0(),,0(

2

6
2

2

6
2

01011

cyl0wall0

2
1

2
1

t

t

t

rrJeAeA

trttr block

λ

θθθ

τλτλ

 

D0 = 28 cm 

z

Human body 
Ti = 36°C 

r

Air 
T∞ = 16°C

2L=180 cm 



 

PROPRIETARY MATERIAL. © 2008 The McGraw-Hill Companies, Inc.  Limited distribution permitted only to teachers and 
educators for course preparation.  If you are a student using this Manual, you are using it without permission. 

11-101

 

11-114 An exothermic process occurs uniformly throughout a sphere. The variation of temperature with 
time is to be obtained. The steady-state temperature of the sphere and the time needed for the sphere to 
reach the average of its initial and final (steady) temperatures are to be determined. 
Assumptions 1 The sphere may be approximated as a lumped system. 2 The thermal properties of the 
sphere are constant. 3 The heat transfer coefficient is constant and uniform over the entire surface.  
Properties The properties of sphere are given to be  k = 300 W/m⋅K, cp = 400 J/kg⋅K, ρ = 7500 kg/m3. 
Analysis (a) First, we check the applicability of lumped system as follows: 
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Since 0.1< Bi , the lumped system analysis is applicable. An 
energy balance on the system may be written to give  
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(b) Now, we use integration to get the variation of sphere temperature with time 
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We obtain the steady-state temperature by setting time to infinity: 
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(c)  The time needed for the sphere to reach the average of its initial and final (steady) temperatures is 
determined from 
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11-115 Large steel plates are quenched in an oil reservoir. The quench time is to be determined.  
Assumptions 1 The thermal properties of the plates are constant. 2 The heat transfer coefficient is constant 
and uniform over the entire surface.  
Properties The properties of steel plates are given to be k = 45 W/m⋅K, ρ = 7800 kg/m3, and cp = 470 
J/kg⋅K. 
Analysis For sphere, the characteristic length and the Biot number are 
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Since 0.1< Bi , the lumped system analysis is applicable. Then the cooling time is determined from 
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11-116 Aluminum wires leaving the extruder at a specified rate are cooled in air. The necessary length of 
the wire is to be determined.  
Assumptions 1 The thermal properties of the geometry are constant. 2 The heat transfer coefficient is 
constant and uniform over the entire surface.  
Properties The properties of aluminum are k = 237 W/m⋅ºC, ρ = 2702 kg/m3, and cp = 0.903 kJ/kg⋅ºC 
(Table A-24). 
Analysis For a long cylinder, the characteristic length and the Biot number are 
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Since 0.1< Bi , the lumped system analysis is applicable. Then the cooling time is determined from 
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Then the necessary length of the wire in the cooling section is determined to be 
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11-117  ···  11-120  Design and Essay Problems 
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