14-67 Two glasses of a double pane window are maintained at specified temperatures. The fraction of heat transferred through the enclosure by radiation is to be determined.
Assumptions 1 Steady operating conditions exist. 2 Air is an ideal gas with constant properties. 3 The air pressure in the enclosure is 1 atm .
Properties The properties of air at 1 atm and the average temperature of $\left(T_{1}+T_{2}\right) / 2=(280+336) / 2=308 \mathrm{~K}=35^{\circ} \mathrm{C}$ are (Table A-22E)

$$
\begin{aligned}
k & =0.02625 \mathrm{~W} / \mathrm{m} .{ }^{\circ} \mathrm{C} \\
v & =1.655 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s} \\
\operatorname{Pr} & =0.7268 \\
\beta & =\frac{1}{T_{f}}=\frac{1}{308 \mathrm{~K}}=0.003247 \mathrm{~K}^{-1}
\end{aligned}
$$

Analysis The characteristic length in this case is the distance between the two glasses, $L_{c}=L=0.4 \mathrm{~m}$. Then,

$$
R a_{L}=\frac{g \beta\left(T_{1}-T_{2}\right) L_{c}^{3}}{v^{2}} \operatorname{Pr}=\frac{\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)\left(0.003247 \mathrm{~K}^{-1}\right)(336-280 \mathrm{~K})(0.4 \mathrm{~m})^{3}}{\left(1.655 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}\right)^{2}}(0.7268)=3.029 \times 10^{8}
$$

The aspect ratio of the geometry is $H / L=1.5 / 0.4=3.75$. For this value of H / L the Nusselt number can be determined from

$$
N u=0.22\left(\frac{\operatorname{Pr}}{0.2+\operatorname{Pr}} R a\right)^{0.28}\left(\frac{H}{L}\right)^{-1 / 4}=0.22\left(\frac{0.7268}{0.2+0.7268}\left(3.029 \times 10^{8}\right)\right)^{0.28}\left(\frac{1.5}{0.4}\right)^{-1 / 4}=35.00
$$

Then,

$$
\begin{aligned}
& A_{s}=H \times W=(1.5 \mathrm{~m})(3 \mathrm{~m})=4.5 \mathrm{~m}^{2} \\
& \dot{Q}_{\text {conv }}=k N u A_{s} \frac{T_{1}-T_{2}}{L}=\left(0.02625 \mathrm{~W} / \mathrm{m} .{ }^{\circ} \mathrm{C}\right)(35.00)\left(4.5 \mathrm{ft}^{2}\right) \frac{(336-280) \mathrm{K}}{0.4 \mathrm{~m}}=578.9 \mathrm{~W}
\end{aligned}
$$

The effective emissivity is

$$
\frac{1}{\varepsilon_{e f f}}=\frac{1}{\varepsilon_{1}}+\frac{1}{\varepsilon_{2}}-1=\frac{1}{0.15}+\frac{1}{0.90}-1=6.778 \longrightarrow \varepsilon_{e f f}=0.1475
$$

The rate of heat transfer by radiation is

$$
\begin{aligned}
\dot{Q}_{\mathrm{rad}} & =\varepsilon_{\mathrm{eff}} A_{s} \sigma\left(T_{1}{ }^{4}-T_{2}{ }^{4}\right) \\
& =(0.1475)\left(4.5 \mathrm{~m}^{2}\right)\left(5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} . \mathrm{K}^{4}\right)\left[(336 \mathrm{~K})^{4}-(280 \mathrm{~K})^{4}\right]=248.4 \mathrm{~W}
\end{aligned}
$$

Then the fraction of heat transferred through the enclosure by radiation becomes

$$
f_{\mathrm{rad}}=\frac{\dot{Q}_{\mathrm{rad}}}{\dot{Q}_{\mathrm{conv}}+\dot{Q}_{\mathrm{rad}}}=\frac{248.4}{578.9+248.4}=\mathbf{0 . 3 0}
$$

