14-72 The absorber plate and the glass cover of a flat-plate solar collector are maintained at specified temperatures. The rate of heat loss from the absorber plate by natural convection is to be determined. Assumptions 1 Steady operating conditions exist. 2 Air is an ideal gas with constant properties. 3 Heat loss by radiation is negligible. 4 The air pressure in the enclusure is 1 atm .
Properties The properties of air at 1 atm and the average temperature of $\left(T_{1}+T_{2}\right) / 2=(80+40) / 2=60^{\circ} \mathrm{C}$ are (Table A-22)

$$
\begin{aligned}
k & =0.02808 \mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C} \\
v & =1.896 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s} \\
\operatorname{Pr} & =0.7202 \\
\beta & =\frac{1}{T_{f}}=\frac{1}{(60+273) \mathrm{K}}=0.003003 \mathrm{~K}^{-1}
\end{aligned}
$$

Analysis For $\theta=0^{\circ}$, we have horizontal rectangular enclosure. The characteristic length in this case is the distance between the two glasses $L_{c}=L=0.025 \mathrm{~m}$ Then,

$40^{\circ} \mathrm{C}$

$$
\begin{aligned}
R a & =\frac{g \beta\left(T_{1}-T_{2}\right) L^{3}}{v^{2}} \operatorname{Pr}=\frac{\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)\left(0.003003 \mathrm{~K}^{-1}\right)(80-40 \mathrm{~K})(0.025 \mathrm{~m})^{3}}{\left(1.896 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}\right)^{2}}(0.7202)=3.689 \times 10^{4} \\
\mathrm{Nu} & =1+1.44\left[1-\frac{1708}{\mathrm{Ra}}\right]^{+}+\left[\frac{\mathrm{Ra}^{1 / 3}}{18}-1\right]^{+} \\
& =1+1.44\left[1-\frac{1708}{3.689 \times 10^{4}}\right]^{+}+\left[\frac{\left(3.689 \times 10^{4}\right)^{1 / 3}}{18}-1\right]^{+}=3.223
\end{aligned}
$$

Then

$$
\begin{aligned}
& A_{s}=H \times W=(1.5 \mathrm{~m})(3 \mathrm{~m})=4.5 \mathrm{~m}^{2} \\
& \dot{Q}=k N u A_{s} \frac{T_{1}-T_{2}}{L}=\left(0.02808 \mathrm{~W} / \mathrm{m} .{ }^{\circ} \mathrm{C}\right)(3.223)\left(4.5 \mathrm{~m}^{2}\right) \frac{(80-40)^{\circ} \mathrm{C}}{0.025 \mathrm{~m}}=652 \mathbf{W}
\end{aligned}
$$

For $\theta=30^{\circ}$, we obtain

$$
\begin{aligned}
\mathrm{Nu}= & 1+1.44\left[1-\frac{1708}{\mathrm{Ra} \cos \theta}\right]^{+}\left[1-\frac{1708(\sin 1.8 \theta)^{1.6}}{\operatorname{Ra} \cos \theta}\right]+\left[\frac{(\mathrm{Ra} \cos \theta)^{1 / 3}}{18}-1\right]^{+} \\
= & 1+1.44\left[1-\frac{1708}{\left(3.689 \times 10^{4}\right) \cos (30)}\right]^{+}\left[1-\frac{1708[\sin (1.8 \times 30)]^{1.6}}{\left(3.689 \times 10^{4}\right) \cos (30)}\right]+\left[\frac{\left[\left(3.689 \times 10^{4}\right) \cos (30)\right]^{1 / 3}}{18}-1\right]^{+} \\
= & 3.074 \\
& \dot{Q}=k N u A_{s} \frac{T_{1}-T_{2}}{L}=\left(0.02808 \mathrm{~W} / \mathrm{m} .{ }^{\circ} \mathrm{C}\right)(3.074)\left(4.5 \mathrm{~m}^{2}\right) \frac{(80-40)^{\circ} \mathrm{C}}{0.025 \mathrm{~m}}=\mathbf{6 2 1 ~ W}
\end{aligned}
$$

For $\theta=90^{\circ}$, we have vertical rectangular enclosure. The Nusselt number for this geometry and orientation can be determined from ($\mathrm{Ra}=3.689 \times 10^{4}$ - same as that for horizontal case)

$$
\begin{aligned}
& N u=0.42 R a^{1 / 4} \operatorname{Pr}^{0.012}\left(\frac{H}{L}\right)^{-0.3}=0.42\left(3.689 \times 10^{4}\right)^{1 / 4}(0.7202)^{0.012}\left(\frac{2 \mathrm{~m}}{0.025 \mathrm{~m}}\right)^{-0.3}=1.557 \\
& \dot{Q}=k N u A_{s} \frac{T_{1}-T_{2}}{L}=\left(0.02808 \mathrm{~W} / \mathrm{m} .{ }^{\circ} \mathrm{C}\right)(1.557)\left(4.5 \mathrm{~m}^{2}\right) \frac{(80-40)^{\circ} \mathrm{C}}{0.025 \mathrm{~m}}=315 \mathrm{~W}
\end{aligned}
$$

Discussion Caution is advised for the vertical case since the condition $H / L<40$ is not satisfied.

