Review Problems

2-72 The deflection of the spring of the two-piston cylinder with a spring shown in the figure is to be determined.

Analysis Summing the forces acting on the piston in the vertical direction gives

$$
\begin{aligned}
F_{s}+F_{2}+F_{3} & =F_{1} \\
k x+P_{2} A_{2}+P_{3}\left(A_{1}-A_{2}\right) & =P_{1} A_{1}
\end{aligned}
$$

which when solved for the deflection of the spring and substituting $A=\pi D^{2} / 4$ gives

$$
\begin{aligned}
x & =\frac{\pi}{4 k}\left[P_{1} D_{1}^{2}-P_{2} D_{2}^{2}-P_{3}\left(D_{1}^{2}-D_{2}^{2}\right)\right] \\
& =\frac{\pi}{4 \times 800}\left[5000 \times 0.08^{2}-10,000 \times 0.03^{2}-1000\left(0.08^{2}-0.03^{2}\right)\right] \\
& =0.0172 \mathrm{~m} \\
& =1.72 \mathrm{~cm}
\end{aligned}
$$

We expressed the spring constant k in kN / m, the pressures in kPa (i.e., $\mathrm{kN} / \mathrm{m}^{2}$) and the diameters in m units.

2-73 The pressure in chamber 1 of the two-piston cylinder with a spring shown in the figure is to be determined.
Analysis Summing the forces acting on the piston in the vertical direction gives

$$
\begin{aligned}
F_{s}+F_{1} & =F_{2}+F_{3} \\
k x+P_{1} A_{1} & =P_{2} A_{2}+P_{3}\left(A_{1}-A_{2}\right)
\end{aligned}
$$

which when solved for the P_{3} and substituting $A=\pi D^{2} / 4$ gives

$$
\begin{aligned}
P_{1} & =P_{2} \frac{A_{2}}{A_{1}}+P_{3}\left(1-\frac{A_{2}}{A_{1}}\right)-\frac{k x}{A_{1}} \\
& =P_{2}\left(\frac{D_{2}}{D_{1}}\right)^{2}+P_{3}\left[1-\left(\frac{D_{2}}{D_{1}}\right)^{2}\right]-\frac{4 k x}{\pi D_{1}^{2}} \\
& =(8000 \mathrm{kPa})\left(\frac{3}{7}\right)^{2}+(300 \mathrm{kPa})\left[1-\left(\frac{3}{7}\right)^{2}\right]-\frac{4(1200 \mathrm{kN} / \mathrm{m})(0.05 \mathrm{~m})}{\pi(0.07 \mathrm{~m})^{2}} \\
& =13,880 \mathrm{kPa}=13.9 \mathbf{~ M P a}
\end{aligned}
$$

