2-82E An expression for the equivalent wind chill temperature is given in English units. It is to be converted to SI units.

Analysis The required conversion relations are $1 \mathrm{mph}=1.609 \mathrm{~km} / \mathrm{h}$ and $T\left({ }^{\circ} \mathrm{F}\right)=1.8 T\left({ }^{\circ} \mathrm{C}\right)+32$. The first thought that comes to mind is to replace $T\left({ }^{\circ} \mathrm{F}\right)$ in the equation by its equivalent $1.8 T\left({ }^{\circ} \mathrm{C}\right)+32$, and V in mph by $1.609 \mathrm{~km} / \mathrm{h}$, which is the "regular" way of converting units. However, the equation we have is not a regular dimensionally homogeneous equation, and thus the regular rules do not apply. The V in the equation is a constant whose value is equal to the numerical value of the velocity in mph . Therefore, if V is given in km / h, we should divide it by 1.609 to convert it to the desired unit of mph. That is,

$$
T_{\text {equiv }}\left({ }^{\circ} \mathrm{F}\right)=91.4-\left[91.4-T_{\text {ambient }}\left({ }^{\circ} \mathrm{F}\right)\right][0.475-0.0203(V / 1.609)+0.304 \sqrt{V / 1.609}]
$$

or

$$
T_{\text {equiv }}\left({ }^{\circ} \mathrm{F}\right)=91.4-\left[91.4-T_{\text {ambient }}\left({ }^{\circ} \mathrm{F}\right)\right][0.475-0.0126 \mathrm{~V}+0.240 \sqrt{V}]
$$

where V is in km / h. Now the problem reduces to converting a temperature in ${ }^{\circ} \mathrm{F}$ to a temperature in ${ }^{\circ} \mathrm{C}$, using the proper convection relation:

$$
1.8 T_{\text {equiv }}\left({ }^{\circ} \mathrm{C}\right)+32=91.4-\left[91.4-\left(1.8 T_{\text {ambient }}\left({ }^{\circ} \mathrm{C}\right)+32\right)\right][0.475-0.0126 V+0.240 \sqrt{V}]
$$

which simplifies to

$$
T_{\text {equiv }}\left({ }^{\circ} \mathrm{C}\right)=33.0-\left(33.0-T_{\text {ambient }}\right)(0.475-0.0126 \mathrm{~V}+0.240 \sqrt{V})
$$

where the ambient air temperature is in ${ }^{\circ} \mathrm{C}$.

