Review Problems

4-108 The cylinder conditions before the heat addition process is specified. The pressure after the heat addition process is to be determined.

Assumptions 1 The contents of cylinder are approximated by the air properties. 2 Air is an ideal gas.
Analysis The final pressure may be determined from the ideal gas relation

$$
P_{2}=\frac{T_{2}}{T_{1}} P_{1}=\left(\frac{1300+273 \mathrm{~K}}{450+273 \mathrm{~K}}\right)(1800 \mathrm{kPa})=3916 \mathbf{k P a}
$$

4-109 A rigid tank contains an ideal gas at a specified state. The final temperature is to be determined for two different processes.

Analysis (a) The first case is a constant volume process. When half of the gas is withdrawn from the tank, the final temperature may be determined from the ideal gas relation as

$$
T_{2}=\frac{m_{1}}{m_{2}} \frac{P_{2}}{P_{1}} T_{1}=(2)\left(\frac{100 \mathrm{kPa}}{300 \mathrm{kPa}}\right)(600 \mathrm{~K})=400 \mathrm{~K}
$$

(b) The second case is a constant volume and constant mass process. The ideal gas relation for this case yields

$$
P_{2}=\frac{T_{2}}{T_{1}} P_{1}=\left(\frac{400 \mathrm{~K}}{600 \mathrm{~K}}\right)(300 \mathrm{kPa})=\mathbf{2 0 0} \mathbf{~ k P a}
$$

