T, °F	P, psia	h, Btu / lbm	x	Phase description
65.89	80	78	0.566	Saturated mixture
15	29.759	69.92	0.6	Saturated mixture
10	70	15.35		Compressed liquid
160	180	129.46		Superheated vapor
110	161.16	117.23	1.0	Saturated vapor

4-30E Complete the following table for Refrigerant-134a:

4-31 A piston-cylinder device contains R-134a at a specified state. Heat is transferred to R-134a. The final pressure, the volume change of the cylinder, and the enthalpy change are to be determined.

- /

Analysis (a) The final pressure is equal to the initial pressure, which is determined from

$$P_2 = P_1 = P_{\text{atm}} + \frac{m_p g}{\pi D^2 / 4} = 88 \text{ kPa} + \frac{(12 \text{ kg})(9.81 \text{ m/s}^2)}{\pi (0.25 \text{ m})^2 / 4} \left(\frac{1 \text{ kN}}{1000 \text{ kg.m/s}^2}\right) = 90.4 \text{ kPa}$$

(b) The specific volume and enthalpy of R-134a at the initial state of 90.4 kPa and -10°C and at the final state of 90.4 kPa and 15°C are (from EES)

 $v_1 = 0.2302 \text{ m}^3/\text{kg}$ $h_1 = 247.76 \text{ kJ/kg}$ $v_2 = 0.2544 \text{ m}^3/\text{kg}$ $h_2 = 268.16 \text{ kJ/kg}$

The initial and the final volumes and the volume change are

$$V_1 = mv_1 = (0.85 \text{ kg})(0.2302 \text{ m}^3/\text{kg}) = 0.1957 \text{ m}^3$$

 $V_2 = mv_2 = (0.85 \text{ kg})(0.2544 \text{ m}^3/\text{kg}) = 0.2162 \text{ m}^3$
 $\Delta V = 0.2162 - 0.1957 = 0.0205 \text{ m}^3$

R-134a 0.85 kg -10°C

(c) The total enthalpy change is determined from

$$\Delta H = m(h_2 - h_1) = (0.85 \text{ kg})(268.16 - 247.76) \text{ kJ/kg} = 17.4 \text{ kJ/kg}$$