4-30E Complete the following table for Refrigerant-134a:

T, ${ }^{\circ} \mathbf{F}$	P, psia	\boldsymbol{h}, Btu / lbm	\boldsymbol{x}	Phase description
$\mathbf{6 5 . 8 9}$	80	78	$\mathbf{0 . 5 6 6}$	Saturated mixture
15	$\mathbf{2 9 . 7 5 9}$	$\mathbf{6 9 . 9 2}$	0.6	Saturated mixture
10	70	$\mathbf{1 5 . 3 5}$	---	Compressed liquid
$\mathbf{1 6 0}$	180	129.46	---	Superheated vapor
110	$\mathbf{1 6 1 . 1 6}$	$\mathbf{1 1 7 . 2 3}$	1.0	Saturated vapor

4-31 A piston-cylinder device contains R-134a at a specified state. Heat is transferred to R-134a. The final pressure, the volume change of the cylinder, and the enthalpy change are to be determined.
Analysis (a) The final pressure is equal to the initial pressure, which is determined from

$$
P_{2}=P_{1}=P_{\mathrm{atm}}+\frac{m_{p} g}{\pi D^{2} / 4}=88 \mathrm{kPa}+\frac{(12 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}{\pi(0.25 \mathrm{~m})^{2} / 4}\left(\frac{1 \mathrm{kN}}{1000 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}}\right)=\mathbf{9 0 . 4} \mathbf{~ k P a}
$$

(b) The specific volume and enthalpy of R-134a at the initial state of 90.4 kPa and $-10^{\circ} \mathrm{C}$ and at the final state of 90.4 kPa and $15^{\circ} \mathrm{C}$ are (from EES)

$$
\begin{array}{ll}
\boldsymbol{v}_{1}=0.2302 \mathrm{~m}^{3} / \mathrm{kg} & h_{1}=247.76 \mathrm{~kJ} / \mathrm{kg} \\
\boldsymbol{v}_{2}=0.2544 \mathrm{~m}^{3} / \mathrm{kg} & h_{2}=268.16 \mathrm{~kJ} / \mathrm{kg}
\end{array}
$$

The initial and the final volumes and the volume change are

$$
\begin{aligned}
& \boldsymbol{V}_{1}=m \boldsymbol{v}_{1}=(0.85 \mathrm{~kg})\left(0.2302 \mathrm{~m}^{3} / \mathrm{kg}\right)=0.1957 \mathrm{~m}^{3} \\
& \boldsymbol{V}_{2}=m \boldsymbol{U}_{2}=(0.85 \mathrm{~kg})\left(0.2544 \mathrm{~m}^{3} / \mathrm{kg}\right)=0.2162 \mathrm{~m}^{3} \\
& \Delta \boldsymbol{V}=0.2162-0.1957=\mathbf{0 . 0 2 0 5} \mathrm{m}^{\mathbf{3}}
\end{aligned}
$$

(c) The total enthalpy change is determined from

$$
\Delta H=m\left(h_{2}-h_{1}\right)=(0.85 \mathrm{~kg})(268.16-247.76) \mathrm{kJ} / \mathrm{kg}=\mathbf{1 7 . 4} \mathbf{~ k J} / \mathbf{k g}
$$

