4-50 A vertical piston-cylinder device is filled with water and covered with a $20-\mathrm{kg}$ piston that serves as the lid. The boiling temperature of water is to be determined.

Analysis The pressure in the cylinder is determined from a force balance on the piston,

$$
P A=P_{\mathrm{atm}} A+W
$$

or,

$$
\begin{aligned}
P & =P_{\mathrm{atm}}+\frac{m g}{A} \\
& =(100 \mathrm{kPa})+\frac{(20 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}{0.01 \mathrm{~m}^{2}}\left(\frac{1 \mathrm{kPa}}{1000 \mathrm{~kg} / \mathrm{m} \cdot \mathrm{~s}^{2}}\right) \\
& =119.61 \mathrm{kPa}
\end{aligned}
$$

The boiling temperature is the saturation temperature corresponding to this pressure,

$$
T=T_{\text {sat } @ 119.61 \mathrm{kPa}}=104.7^{\circ} \mathrm{C} \quad(\text { Table A-5) }
$$

4-51 A rigid tank that is filled with saturated liquid-vapor mixture is heated. The temperature at which the liquid in the tank is completely vaporized is to be determined, and the T - \boldsymbol{v} diagram is to be drawn.
Analysis This is a constant volume process ($\boldsymbol{v}=\boldsymbol{V} / m=$ constant $)$,
and the specific volume is determined to be

$$
\boldsymbol{v}=\frac{\boldsymbol{V}}{m}=\frac{2.5 \mathrm{~m}^{3}}{15 \mathrm{~kg}}=0.1667 \mathrm{~m}^{3} / \mathrm{kg}
$$

When the liquid is completely vaporized the tank will contain saturated vapor only. Thus,

$$
\boldsymbol{v}_{2}=\boldsymbol{v}_{g}=0.1667 \mathrm{~m}^{3} / \mathrm{kg}
$$

The temperature at this point is the temperature that corresponds to this \boldsymbol{v}_{g} value,

$$
T=T_{\text {sat } @ \boldsymbol{v}_{\mathrm{g}}=0.1667 \mathrm{~m}^{3} / \mathrm{kg}}=187.0^{\circ} \mathrm{C} \quad(\text { Table A-4 })
$$

