4-94 Ethylene is heated at constant pressure. The specific volume change of ethylene is to be determined using the compressibility chart.

Properties The gas constant, the critical pressure, and the critical temperature of ethane are, from Table A-1,

$$R = 0.2964 \text{ kPa·m}^3/\text{kg·K},$$
 $T_{cr} = 282.4 \text{ K},$ $P_{cr} = 5.12 \text{ MPa}$

Analysis From the compressibility chart at the initial and final states (Fig. A-15),

$$T_{R1} = \frac{T_1}{T_{cr}} = \frac{293 \text{ K}}{282.4 \text{ K}} = 1.038$$

$$P_{R1} = \frac{P_1}{P_{cr}} = \frac{5 \text{ MPa}}{5.12 \text{ MPa}} = 0.977$$

$$T_{R2} = \frac{T_2}{T_{cr}} = \frac{473 \text{ K}}{282.4 \text{ KR}} = 1.675$$

$$P_{R2} = P_{R1} = 0.977$$

$$Z_1 = 0.961$$
Ethylene 5 MPa 20°C

The specific volume change is

$$\Delta \mathbf{v} = \frac{R}{P} (Z_2 T_2 - Z_1 T_1)$$

$$= \frac{0.2964 \,\mathrm{kPa} \cdot \mathrm{m}^3 / \mathrm{kg} \cdot \mathrm{K}}{5000 \,\mathrm{kPa}} \big[(0.961)(473 \,\mathrm{K}) - (0.56)(293 \,\mathrm{K}) \big]$$

$$= \mathbf{0.0172 \, m^3 / kg}$$