4-94 Ethylene is heated at constant pressure. The specific volume change of ethylene is to be determined using the compressibility chart.

Properties The gas constant, the critical pressure, and the critical temperature of ethane are, from Table A1,

$$
R=0.2964 \mathrm{kPa} \cdot \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{~K}, \quad T_{\mathrm{cr}}=282.4 \mathrm{~K}, \quad P_{\mathrm{cr}}=5.12 \mathrm{MPa}
$$

Analysis From the compressibility chart at the initial and final states (Fig. A-15),

$$
\left.\begin{array}{l}
T_{R 1}=\frac{T_{1}}{T_{\mathrm{cr}}}=\frac{293 \mathrm{~K}}{282.4 \mathrm{~K}}=1.038 \\
P_{R 1}=\frac{P_{1}}{P_{\mathrm{cr}}}=\frac{5 \mathrm{MPa}}{5.12 \mathrm{MPa}}=0.977
\end{array}\right\} \mathrm{Z}_{1}=0.56
$$

The specific volume change is

$$
\begin{aligned}
\Delta \boldsymbol{v} & =\frac{R}{P}\left(Z_{2} T_{2}-Z_{1} T_{1}\right) \\
& =\frac{0.2964 \mathrm{kPa} \cdot \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{~K}}{5000 \mathrm{kPa}}[(0.961)(473 \mathrm{~K})-(0.56)(293 \mathrm{~K})] \\
& =\mathbf{0 . 0 1 7 2} \mathbf{m}^{3} / \mathbf{k g}
\end{aligned}
$$

