5-46 R-134a contained in a spring-loaded piston-cylinder device is cooled until the temperature and volume drop to specified values. The heat transfer and the work done are to be determined.

Assumptions 1 The cylinder is stationary and thus the kinetic and potential energy changes are zero. 2 There are no work interactions involved other than the boundary work. 3 The thermal energy stored in the cylinder itself is negligible. 4 The compression or expansion process is quasi-equilibrium.

Analysis We take the contents of the cylinder as the system. This is a closed system since no mass enters or leaves. The energy balance for this stationary closed system can be expressed as

$$
\begin{aligned}
\underbrace{E_{\text {in }}-E_{\text {out }}}_{\begin{array}{c}
\text { Net energy transfer } \\
\text { py heat, work, and mass }
\end{array}} & =\underbrace{\Delta E_{\text {system }}}_{\begin{array}{c}
\text { Change in internal, kinetic, } \\
\text { potential, etc. energies }
\end{array}} \\
W_{b, \text { in }}-Q_{\text {out }} & =\Delta U=m\left(u_{2}-u_{1}\right) \quad(\text { since KE }=\mathrm{PE}=0) \\
Q_{\text {out }} & =W_{b, \text { in }}-m\left(u_{2}-u_{1}\right)
\end{aligned}
$$

The initial state properties are (Table A-13)

$$
\left.\begin{array}{l}
P_{1}=600 \mathrm{kPa} \\
T_{1}=15^{\circ} \mathrm{C}
\end{array}\right\} \begin{aligned}
& \boldsymbol{v}_{1}=0.055522 \mathrm{~m}^{3} / \mathrm{kg} \\
& u_{1}=357.96 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

The mass of refrigerant is

$$
m=\frac{\boldsymbol{V}_{1}}{\boldsymbol{V}_{1}}=\frac{0.3 \mathrm{~m}^{3}}{0.055522 \mathrm{~m}^{3} / \mathrm{kg}}=5.4033 \mathrm{~kg}
$$

The final specific volume is

$$
\boldsymbol{v}_{2}=\frac{\boldsymbol{V}_{2}}{m}=\frac{0.1 \mathrm{~m}^{3}}{5.4033 \mathrm{~kg}}=0.018507 \mathrm{~m}^{3} / \mathrm{kg}
$$

The final state at this specific volume and at $-30^{\circ} \mathrm{C}$ is a saturated mixture. The properties at this state are (Table A-11)

$$
\begin{aligned}
& x_{2}=\frac{\boldsymbol{v}_{2}-\boldsymbol{v}_{f}}{\boldsymbol{v}_{g}-\boldsymbol{v}_{f}}=\frac{0.018507-0.0007203}{0.22580-0.0007203}=0.079024 \\
& u_{2}=u_{f}+x_{2} u_{f g}=12.59+(0.079024)(200.52)=28.44 \mathrm{~kJ} / \mathrm{kg} \\
& P_{2}=84.43 \mathrm{kPa}
\end{aligned}
$$

Since this is a linear process, the work done is equal to the area under the process line 1-2:

$$
W_{b, \text { in }}=\text { Area }=\frac{P_{1}+P_{2}}{2}\left(\boldsymbol{V}_{1}-\boldsymbol{V}_{2}\right)=\frac{(600+84.43) \mathrm{kPa}}{2}(0.3-0.1) \mathrm{m}^{3}\left(\frac{1 \mathrm{~kJ}}{1 \mathrm{kPa} \cdot \mathrm{~m}^{3}}\right)=\mathbf{6 8 . 4 4} \mathbf{~ k J}
$$

Substituting into energy balance equation gives

$$
Q_{\text {out }}=W_{b, \text { in }}-m\left(u_{2}-u_{1}\right)=68.44 \mathrm{~kJ}-(5.4033 \mathrm{~kg})(28.44-357.96) \mathrm{kJ} / \mathrm{kg}=1849 \mathbf{~ k J}
$$

