5-72 Air in a closed system undergoes an isothermal process. The initial volume, the work done, and the heat transfer are to be determined.

Assumptions 1 Air is an ideal gas since it is at a high temperature and low pressure relative to its critical point values of 132.5 K and 3.77 MPa . 2 The kinetic and potential energy changes are negligible, $\Delta \mathrm{ke} \cong \Delta \mathrm{pe} \cong 0.3$ Constant specific heats can be used for air.

Properties The gas constant of air is $R=0.287 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$ (Table A-1).
Analysis We take the air as the system. This is a closed system since no mass crosses the boundaries of the system. The energy balance for this system can be expressed as

$$
\begin{aligned}
& \begin{array}{c}
\begin{array}{c}
\text { Neteneryy tranfer } \\
\text { by heat, work, and mass }
\end{array} \\
E_{\text {in }}-E_{\text {out }}
\end{array} \underbrace{\Delta E_{\text {systm }}}_{\begin{array}{c}
\text { Changei intinteral, , ,inetic, } \\
\text { potential, etce.energies }
\end{array}} \\
& Q_{\text {in }}-W_{b, \text { out }} \Delta U=m c_{\nu}\left(T_{2}-T_{1}\right) \\
& Q_{\text {in }}-W_{b, \text { out }}=0 \quad\left(\operatorname{since} T_{1}=T_{2}\right) \\
& Q_{\text {in }}=W_{b, \text { out }}
\end{aligned}
$$

The initial volume is

$$
\boldsymbol{V}_{1}=\frac{m R T_{1}}{P_{1}}=\frac{(2 \mathrm{~kg})\left(0.287 \mathrm{kPa} \cdot \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{~K}\right)(473 \mathrm{~K})}{600 \mathrm{kPa}}=\mathbf{0 . 4 5 2 5} \mathrm{m}^{3}
$$

Using the boundary work relation for the isothermal process of an ideal gas gives

$$
\begin{aligned}
W_{b, \text { out }} & =m \int_{1}^{2} P d \boldsymbol{v}=m R T \int_{1}^{2} \frac{d \boldsymbol{v}}{\boldsymbol{v}}=m R T \ln \frac{\boldsymbol{v}_{2}}{\boldsymbol{v}_{1}}=m R T \ln \frac{P_{1}}{P_{2}} \\
& =(2 \mathrm{~kg})\left(0.287 \mathrm{kPa} \cdot \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{~K}\right)(473 \mathrm{~K}) \ln \frac{600 \mathrm{kPa}}{80 \mathrm{kPa}}=\mathbf{5 4 7 . 1} \mathbf{k J}
\end{aligned}
$$

From energy balance equation,

$$
Q_{\mathrm{in}}=W_{b, \text { out }}=\mathbf{5 4 7 . 1} \mathbf{k J}
$$

