6-122 An evacuated bottle is surrounded by atmospheric air. A valve is opened, and air is allowed to fill the bottle. The amount of heat transfer through the wall of the bottle when thermal and mechanical equilibrium is established is to be determined.

Assumptions 1 This is an unsteady process since the conditions within the device are changing during the process, but it can be analyzed as a uniform-flow process since the state of fluid at the inlet remains constant. 2 Air is an ideal gas with variable specific heats. 3 Kinetic and potential energies are negligible. 4 There are no work interactions involved. 5 The direction of heat transfer is to the air in the bottle (will be verified).
Properties The gas constant of air is $0.287 \mathrm{kPa} . \mathrm{m}^{3} / \mathrm{kg} . \mathrm{K}$ (Table A-1).
Analysis We take the bottle as the system, which is a control volume since mass crosses the boundary. Noting that the microscopic energies of flowing and nonflowing fluids are represented by enthalpy h and internal energy u, respectively, the mass and energy balances for this uniform-flow system can be expressed as

Mass balance:

$$
m_{\mathrm{in}}-m_{\mathrm{out}}=\Delta m_{\text {system }} \rightarrow \quad m_{i}=m_{2} \quad\left(\text { since } m_{\text {out }}=m_{\text {initial }}=0\right)
$$

Energy balance:

$$
\begin{aligned}
\underbrace{E_{\text {in }}-E_{\text {out }}}_{\begin{array}{c}
\text { Net energy transfer } \\
\text { by heat, work, and mass }
\end{array}} & =\underbrace{\Delta E_{\text {system }}}_{\begin{array}{c}
\text { Change in internal, kinetic, } \\
\text { potential, etc. energies }
\end{array}} \\
\quad Q_{\mathrm{in}}+m_{i} h_{i} & =m_{2} u_{2} \quad\left(\text { since } W \cong E_{\text {out }}=E_{\text {initial }}=k e \cong p e \cong 0\right)
\end{aligned}
$$

Combining the two balances:

$$
Q_{\mathrm{in}}=m_{2}\left(u_{2}-h_{i}\right)
$$

where

$$
\begin{aligned}
& m_{2}=\frac{P_{2} \boldsymbol{V}}{R T_{2}}=\frac{(100 \mathrm{kPa})\left(0.008 \mathrm{~m}^{3}\right)}{\left(0.287 \mathrm{kPa} \cdot \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{~K}\right)(290 \mathrm{~K})}=0.0096 \mathrm{~kg} \\
& T_{i}=T_{2}=290 \mathrm{~K} \xrightarrow{\text { Table A-17 }} \begin{array}{l}
h_{i}=290.16 \mathrm{~kJ} / \mathrm{kg} \\
u_{2}=206.91 \mathrm{~kJ} / \mathrm{kg}
\end{array}
\end{aligned}
$$

Substituting,

$$
Q_{\mathrm{in}}=(0.0096 \mathrm{~kg})(206.91-290.16) \mathrm{kJ} / \mathrm{kg}=-0.8 \mathrm{~kJ}
$$

or

$$
Q_{\text {out }}=\mathbf{0 . 8} \mathbf{~ k J}
$$

Discussion The negative sign for heat transfer indicates that the assumed direction is wrong. Therefore, we reverse the direction.

